互联网中流量分布的不均衡会导致网络拥塞、网络资源得不到有效利用.而为了负载均衡,现有算法调整路由又会造成新路径过长,服务质量降低.提出了一种路由调整算法LCBA(length-constrained most balanced algorithm),在保证时延的基础上...互联网中流量分布的不均衡会导致网络拥塞、网络资源得不到有效利用.而为了负载均衡,现有算法调整路由又会造成新路径过长,服务质量降低.提出了一种路由调整算法LCBA(length-constrained most balanced algorithm),在保证时延的基础上降低网络最大带宽利用率.基于Abilene2网络拓扑和真实流量的实验结果表明,LCBA算法能够有效缓解骨干网拥塞,最多可以降低最大带宽利用率近50%.仿真实验结果显示:与现有算法相比,该算法能够同时满足关键流路径长度和最大带宽利用率两方面的要求.此外,算法复杂度为O(N2logN),好于大部分路由调整算法.展开更多
A min-max optimization method is proposed as a new approach to deal with the weight determination problem in the context of the analytic hierarchy process. The priority is obtained through minimizing the maximal absol...A min-max optimization method is proposed as a new approach to deal with the weight determination problem in the context of the analytic hierarchy process. The priority is obtained through minimizing the maximal absolute difference between the weight vector obtained from each column and the ideal weight vector. By transformation, the. constrained min- max optimization problem is converted to a linear programming problem, which can be solved using either the simplex method or the interior method. The Karush-Kuhn- Tucker condition is also analytically provided. These control thresholds provide a straightforward indication of inconsistency of the pairwise comparison matrix. Numerical computations for several case studies are conducted to compare the performance of the proposed method with three existing methods. This observation illustrates that the min-max method controls maximum deviation and gives more weight to non- dominate factors.展开更多
The system considered in this work consists of a cylinder which is controlled by a pair of three-way servo valves rather than a four-way one.Therefore,the cylinder output stiffness is independently controllable of the...The system considered in this work consists of a cylinder which is controlled by a pair of three-way servo valves rather than a four-way one.Therefore,the cylinder output stiffness is independently controllable of the output force.A discontinuous projection based adaptive robust controller (ARC) was constructed to achieve high-accuracy output force trajectory tracking for the system.In ARC,on-line parameter adaptation method was adopted to reduce the extent of parametric uncertainties due to the variation of friction parameters,and sliding mode control method was utilized to attenuate the effects of parameter estimation errors,unmodelled dynamics and disturbance.Furthermore,output stiffness maximization/minimization was introduced to fulfill the requirement of many robotic applications.Extensive experimental results were presented to illustrate the effectiveness and the achievable performance of the proposed scheme.For tracking a 0.5 Hz sinusoidal trajectory,maximum tracking error is 4.1 N and average tracking error is 2.2 N.Meanwhile,the output stiffness can be made and maintained near its maximum/minimum.展开更多
It has been shown that the deployment of device-to-device(D2D) communication in cellular systems can provide better support for local services. However, improper design of the hybrid system may cause severe interferen...It has been shown that the deployment of device-to-device(D2D) communication in cellular systems can provide better support for local services. However, improper design of the hybrid system may cause severe interference between cellular and D2D links. In this paper, we consider transceiver design for the system employing multiple antennas to mitigate the interference. The precoder and decoder matrices are optimized in terms of sum mean squared error(MSE) and capacity, respectively. For the MSE minimization problem, we present an alternative transceiver optimization algorithm. While for the non-convex capacity maximization problem, we decompose the primal problem into a sequence of standard convex quadratic programs for efficient optimization. The evaluation of our proposed algorithms for performance enhancement of the entire D2D integrated cellular system is carried out through simulations.展开更多
We investigate quantum parameter estimation based on linear and Kerr-type nonlinear controls in an open quantum system, and consider the dissipation rate as an unknown parameter. We show that while the precision of pa...We investigate quantum parameter estimation based on linear and Kerr-type nonlinear controls in an open quantum system, and consider the dissipation rate as an unknown parameter. We show that while the precision of parameter estimation is improved,it usually introduces a significant deformation to the system state. Moreover, we propose a multi-objective model to optimize the two conflicting objectives:(1) maximizing the Fisher information, improving the parameter estimation precision, and(2)minimizing the deformation of the system state, which maintains its fidelity. Finally, simulations of a simplified ε-constrained model demonstrate the feasibility of the Hamiltonian control in improving the precision of the quantum parameter estimation.展开更多
文摘互联网中流量分布的不均衡会导致网络拥塞、网络资源得不到有效利用.而为了负载均衡,现有算法调整路由又会造成新路径过长,服务质量降低.提出了一种路由调整算法LCBA(length-constrained most balanced algorithm),在保证时延的基础上降低网络最大带宽利用率.基于Abilene2网络拓扑和真实流量的实验结果表明,LCBA算法能够有效缓解骨干网拥塞,最多可以降低最大带宽利用率近50%.仿真实验结果显示:与现有算法相比,该算法能够同时满足关键流路径长度和最大带宽利用率两方面的要求.此外,算法复杂度为O(N2logN),好于大部分路由调整算法.
基金The US National Science Foundation (No. CMMI-0408390,CMMI-0644552,BCS-0527508)the National Natural Science Foundation of China (No. 51010044,U1134206)+2 种基金the Fok YingTong Education Foundation (No. 114024)the Natural Science Foundation of Jiangsu Province (No. BK2009015)the Postdoctoral Science Foundation of Jiangsu Province (No. 0901005C)
文摘A min-max optimization method is proposed as a new approach to deal with the weight determination problem in the context of the analytic hierarchy process. The priority is obtained through minimizing the maximal absolute difference between the weight vector obtained from each column and the ideal weight vector. By transformation, the. constrained min- max optimization problem is converted to a linear programming problem, which can be solved using either the simplex method or the interior method. The Karush-Kuhn- Tucker condition is also analytically provided. These control thresholds provide a straightforward indication of inconsistency of the pairwise comparison matrix. Numerical computations for several case studies are conducted to compare the performance of the proposed method with three existing methods. This observation illustrates that the min-max method controls maximum deviation and gives more weight to non- dominate factors.
基金Projects(50775200,50905156)supported by the National Natural Science Foundation of China
文摘The system considered in this work consists of a cylinder which is controlled by a pair of three-way servo valves rather than a four-way one.Therefore,the cylinder output stiffness is independently controllable of the output force.A discontinuous projection based adaptive robust controller (ARC) was constructed to achieve high-accuracy output force trajectory tracking for the system.In ARC,on-line parameter adaptation method was adopted to reduce the extent of parametric uncertainties due to the variation of friction parameters,and sliding mode control method was utilized to attenuate the effects of parameter estimation errors,unmodelled dynamics and disturbance.Furthermore,output stiffness maximization/minimization was introduced to fulfill the requirement of many robotic applications.Extensive experimental results were presented to illustrate the effectiveness and the achievable performance of the proposed scheme.For tracking a 0.5 Hz sinusoidal trajectory,maximum tracking error is 4.1 N and average tracking error is 2.2 N.Meanwhile,the output stiffness can be made and maintained near its maximum/minimum.
基金supportedin part by Science and Technology Project of State Grid Corporation of China(SGIT0000KJJS1500008)Science and Technology Project of State Grid Corporation of China:“Research and Application of Distributed Energy Resource Public Information Service Platform based on Multisource Data Fusion and Mobile Internet Technologies”Science and Technology Project of State Grid Corporation of China:“Research on communication access technology for the integration, protection, and acquisition of multiple new energy resources”
文摘It has been shown that the deployment of device-to-device(D2D) communication in cellular systems can provide better support for local services. However, improper design of the hybrid system may cause severe interference between cellular and D2D links. In this paper, we consider transceiver design for the system employing multiple antennas to mitigate the interference. The precoder and decoder matrices are optimized in terms of sum mean squared error(MSE) and capacity, respectively. For the MSE minimization problem, we present an alternative transceiver optimization algorithm. While for the non-convex capacity maximization problem, we decompose the primal problem into a sequence of standard convex quadratic programs for efficient optimization. The evaluation of our proposed algorithms for performance enhancement of the entire D2D integrated cellular system is carried out through simulations.
基金supported by the National Natural Science Foundation of China(Grant No.11404113)the Guangzhou Key Laboratory of Brain Computer Interaction and Applications(Grant No.201509010006)
文摘We investigate quantum parameter estimation based on linear and Kerr-type nonlinear controls in an open quantum system, and consider the dissipation rate as an unknown parameter. We show that while the precision of parameter estimation is improved,it usually introduces a significant deformation to the system state. Moreover, we propose a multi-objective model to optimize the two conflicting objectives:(1) maximizing the Fisher information, improving the parameter estimation precision, and(2)minimizing the deformation of the system state, which maintains its fidelity. Finally, simulations of a simplified ε-constrained model demonstrate the feasibility of the Hamiltonian control in improving the precision of the quantum parameter estimation.