针对小采样数据长度下,采样协方差矩阵对统计协方差矩阵估计不准,影响传统最大最小特征值(MME)检测算法检测性能的问题,提出一种基于逼近收缩(OAS)矩阵估计的改进MME检测算法。首先利用OAS估计量对采样数据做协方差矩阵估计,再对估计协...针对小采样数据长度下,采样协方差矩阵对统计协方差矩阵估计不准,影响传统最大最小特征值(MME)检测算法检测性能的问题,提出一种基于逼近收缩(OAS)矩阵估计的改进MME检测算法。首先利用OAS估计量对采样数据做协方差矩阵估计,再对估计协方差矩阵特征值分解,将最大最小特征值之比作为检测统计量,克服了传统MME算法检测门限随采样点大幅波动的缺陷,提高了检测门限的鲁棒性。仿真结果表明,所提算法的检测门限具有鲁棒性,检测性能提高了1 d B^2 d B。展开更多
将随机矩阵的非渐近谱理论应用到协作频谱感知中,对接收信号样本协方差矩阵的最大特征值和最小特征值进行分析,该文提出一种精确的最大最小特征值差(Exact Maximum Minimum Eigenvalue Difference,EMMED)的协作感知算法。对于任意给定...将随机矩阵的非渐近谱理论应用到协作频谱感知中,对接收信号样本协方差矩阵的最大特征值和最小特征值进行分析,该文提出一种精确的最大最小特征值差(Exact Maximum Minimum Eigenvalue Difference,EMMED)的协作感知算法。对于任意给定的协作用户个数K和采样点数N,首先推导了最大最小特征值之差的精确概率密度函数(Probability Density Function,PDF)和累积分布函数(Cumulative Distribution Function,CDF),然后利用该分布函数设计了所提算法的判决阈值。理论分析表明,EMMED算法的判决阈值较已有的渐进最大最小特征值差(Asymptotic Maximum Minimum Eigenvalue Difference,AMMED)检测更为精确,算法无需主用户信号特征并且能够对抗噪声不确定度影响。仿真结果表明,存在噪声不确定度的感知环境下,EMMED算法较已有的精确最大特征值(Exact Maximum Eigenvalue,EME)和EMMER等频谱感知算法具有更好的检测性能。展开更多
文摘针对小采样数据长度下,采样协方差矩阵对统计协方差矩阵估计不准,影响传统最大最小特征值(MME)检测算法检测性能的问题,提出一种基于逼近收缩(OAS)矩阵估计的改进MME检测算法。首先利用OAS估计量对采样数据做协方差矩阵估计,再对估计协方差矩阵特征值分解,将最大最小特征值之比作为检测统计量,克服了传统MME算法检测门限随采样点大幅波动的缺陷,提高了检测门限的鲁棒性。仿真结果表明,所提算法的检测门限具有鲁棒性,检测性能提高了1 d B^2 d B。
文摘将随机矩阵的非渐近谱理论应用到协作频谱感知中,对接收信号样本协方差矩阵的最大特征值和最小特征值进行分析,该文提出一种精确的最大最小特征值差(Exact Maximum Minimum Eigenvalue Difference,EMMED)的协作感知算法。对于任意给定的协作用户个数K和采样点数N,首先推导了最大最小特征值之差的精确概率密度函数(Probability Density Function,PDF)和累积分布函数(Cumulative Distribution Function,CDF),然后利用该分布函数设计了所提算法的判决阈值。理论分析表明,EMMED算法的判决阈值较已有的渐进最大最小特征值差(Asymptotic Maximum Minimum Eigenvalue Difference,AMMED)检测更为精确,算法无需主用户信号特征并且能够对抗噪声不确定度影响。仿真结果表明,存在噪声不确定度的感知环境下,EMMED算法较已有的精确最大特征值(Exact Maximum Eigenvalue,EME)和EMMER等频谱感知算法具有更好的检测性能。