地形坡度对星载LiDAR(lightdetection and ranging)估测最大树高具有较大的影响。为了提高坡度条件下树高的反演精度,通过建立坡地条件下5种不同的最大树高估测模型,前3个模型分别使用不同DEM(digital elevation model)数据的地形指数...地形坡度对星载LiDAR(lightdetection and ranging)估测最大树高具有较大的影响。为了提高坡度条件下树高的反演精度,通过建立坡地条件下5种不同的最大树高估测模型,前3个模型分别使用不同DEM(digital elevation model)数据的地形指数来量化地形坡度的Xing模型,第4个模型使用波形参数-未改进边缘长度来量化地形坡度,第5个模型与第4个模型类似,用改进边缘长度来替换未改进边缘长度。结果可知,波形参数模型的精度要高于使用DEM数据的地形指数的Xing模型的精度,第5个模型的精度要高于第4个模型的精度。表明波形参数量化地形坡度的能力要优于DEM数据的地形指数,而改进边缘长度模型更适合估测坡地的最大树高。展开更多
文摘地形坡度对星载LiDAR(lightdetection and ranging)估测最大树高具有较大的影响。为了提高坡度条件下树高的反演精度,通过建立坡地条件下5种不同的最大树高估测模型,前3个模型分别使用不同DEM(digital elevation model)数据的地形指数来量化地形坡度的Xing模型,第4个模型使用波形参数-未改进边缘长度来量化地形坡度,第5个模型与第4个模型类似,用改进边缘长度来替换未改进边缘长度。结果可知,波形参数模型的精度要高于使用DEM数据的地形指数的Xing模型的精度,第5个模型的精度要高于第4个模型的精度。表明波形参数量化地形坡度的能力要优于DEM数据的地形指数,而改进边缘长度模型更适合估测坡地的最大树高。