期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于序列剖视图的机械类网格模型搜索方法(Ⅰ) 被引量:2
1
作者 石源 莫蓉 +2 位作者 刘红军 李健 万能 《计算机集成制造系统》 EI CSCD 北大核心 2010年第5期912-921,共10页
研究了基于视图特征的机械类网格模型的搜索,为确定视图的投影方向和剖切位置,首先给出了改进的最大法线分布方法来生成模型的三个旋转无关主轴,并将该三个主轴方向分别作为模型三个正交剖视图的投影方向。在此基础之上,提出了一种基于... 研究了基于视图特征的机械类网格模型的搜索,为确定视图的投影方向和剖切位置,首先给出了改进的最大法线分布方法来生成模型的三个旋转无关主轴,并将该三个主轴方向分别作为模型三个正交剖视图的投影方向。在此基础之上,提出了一种基于轮廓图的序列剖视图自适应创建方法,用于生成有代表性的序列剖视图。通过实验验证了上述两种方法的可行性和有效性。 展开更多
关键词 序列剖视图 最大法线分布 网格模型 搜索 旋转无关主轴 计算机辅助设计
下载PDF
Estimation of Design Sea Ice Thickness with Maximum Entropy Distribution by Particle Swarm Optimization Method 被引量:1
2
作者 TAO Shanshan DONG Sheng +1 位作者 WANG Zhifeng JIANG Wensheng 《Journal of Ocean University of China》 SCIE CAS 2016年第3期423-428,共6页
The maximum entropy distribution, which consists of various recognized theoretical distributions, is a better curve to estimate the design thickness of sea ice. Method of moment and empirical curve fitting method are ... The maximum entropy distribution, which consists of various recognized theoretical distributions, is a better curve to estimate the design thickness of sea ice. Method of moment and empirical curve fitting method are common-used parameter estimation methods for maximum entropy distribution. In this study, we propose to use the particle swarm optimization method as a new parameter estimation method for the maximum entropy distribution, which has the advantage to avoid deviation introduced by simplifications made in other methods. We conducted a case study to fit the hindcasted thickness of the sea ice in the Liaodong Bay of Bohai Sea using these three parameter-estimation methods for the maximum entropy distribution. All methods implemented in this study pass the K-S tests at 0.05 significant level. In terms of the average sum of deviation squares, the empirical curve fitting method provides the best fit for the original data, while the method of moment provides the worst. Among all three methods, the particle swarm optimization method predicts the largest thickness of the sea ice for a same return period. As a result, we recommend using the particle swarm optimization method for the maximum entropy distribution for offshore structures mainly influenced by the sea ice in winter, but using the empirical curve fitting method to reduce the cost in the design of temporary and economic buildings. 展开更多
关键词 sea ice thickness maximum entropy distribution particle swarm optimization return period offshore structural de-sign
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部