期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
不同粒径镁铝合金粉尘爆炸与抑爆特性研究 被引量:16
1
作者 王林元 吕瑞琪 邓洪波 《中国安全生产科学技术》 CAS CSCD 北大核心 2017年第1期34-38,共5页
为了研究镁铝合金粉爆炸危险特性,利用20L球形爆炸容器进行测试,结果表明:180目(80μm)、120目(125μm)和60目(250μm)3种粒径下的金属粉尘爆炸下限浓度分别为45 g/m^3,55 g/m^3和95 g/m^3。相同浓度下最大爆炸压力随粒径增大的而减小... 为了研究镁铝合金粉爆炸危险特性,利用20L球形爆炸容器进行测试,结果表明:180目(80μm)、120目(125μm)和60目(250μm)3种粒径下的金属粉尘爆炸下限浓度分别为45 g/m^3,55 g/m^3和95 g/m^3。相同浓度下最大爆炸压力随粒径增大的而减小。以碳化硅和石墨为代表的研究中,60目,120目和180目的镁铝合金粉以10%的浓度梯度加入碳化硅浓度分别至50%,70%和80%,石墨浓度至30%,50%和60%时,镁铝合金粉不会发生爆炸。表明碳化硅及石墨等惰性粉尘都能对粉尘爆炸有抑制作用,其中石墨对镁铝合金粉的抑爆作用明显优于碳化硅。 展开更多
关键词 安全工程 镁铝合金粉 炸下限 粒径 最大爆压 惰性粉尘
下载PDF
Comparative experimental study on inhibiting gas explosion using ABC dry powder and diatomite powder 被引量:6
2
作者 DENG Jun PU Guang-mei +1 位作者 LUO Zhen-min CHENG Fang-ming 《Journal of Coal Science & Engineering(China)》 2012年第2期138-142,共5页
Using a 20 L spherical explosion suppressing test system, the largest gas explosion pressure and maximum pressure rising rate with additives of ultra-fine ABC dry powder and diatomite powder were tested and compared, ... Using a 20 L spherical explosion suppressing test system, the largest gas explosion pressure and maximum pressure rising rate with additives of ultra-fine ABC dry powder and diatomite powder were tested and compared, and the explosion suppression effect of the two kinds of powder was analyzed. Experimental results show that both powders can suppress gas ex- plosion and ABC dry powder is superior to diatomite powder. Adding two powders under the same experimental conditions, when methane concentration is 7.0%, the maximum explosion pressure decreased 39% and 4%, respectively, while the rising rate of the maximum pressure decreased 80% and 53%, respectively. When methane concentration is 9.5%, the maximum ex- plosion pressure decreased 14% and 12%, respectively, the rising rate of maximum pressure decreased 62% and 27%, respec- tively, the maximum explosion pressure decreased 23% and 18%, respectively, while the rising rate of the maximum pressure decreased 77% and 70%, respectively. When methane concentration is 12.0%, the explosion suppression effect of ultra-fine ABC dry powder is not affected by the methane concentration, and the explosion suppression effect of diatomite powder under high methane concentrations is more obvious. 展开更多
关键词 gas explosion ABC dry powder explosion suppression DIATOMITE
下载PDF
Mechanism research of gas and coal dust explosion 被引量:1
3
作者 ZHANG Yan-song HAN Li-li WANG Lei 《Journal of Coal Science & Engineering(China)》 2009年第2期171-174,共4页
Combined with the experimental results from the large tunnel of the ChongqingResearch Institute,the mechanism of gas and coal dust explosion was studied.Someconcepts about gas and coal dust explosion were introduced s... Combined with the experimental results from the large tunnel of the ChongqingResearch Institute,the mechanism of gas and coal dust explosion was studied.Someconcepts about gas and coal dust explosion were introduced such as the form conditionand influential factors.Gas and coal dust explosion propagation was researched and thelifting process of coal dust was simulated.When an explosion occurred due to great mixtureof gas and air,the maximum explosion pressure appeared in the neighborhood of theexplosion source point.Before it propagated to the tunnel of the deposited coal dust,themaximum explosion pressure appeared to be in declining trend.Part of the energy waslost in the process of raising the deposited coal dust through a shock wave,so the maximumexplosion pressure was smallest on the foreside of the deposited coal dust sector.On the deposited coal dust sector,the explosion pressure rapidly increased and droppedoff after achieving the largest peak value.Because of coal dust participation in the explosion,the flame velocity rose rapidly on the deposited coal dust and achieved a basic stablevalue;coal dust was ignited to explode by initial laminar flame,and the laminar flametransformed into turbulent flame.The turbulence transformed the flame fold into a funnelshape and the shock wave interacted with the flame,so the combustion rate rose and thepressure wave was further enhanced.The regeneration mechanism between the flamecombustion rate and the aerodynamic flowing structure achieved the final critical state forforming the detonation. 展开更多
关键词 gas and coal dust explosion mechanism research influence factor coal dust hoisted process
下载PDF
Mechanical Model of Domestic Gas Explosion Load 被引量:8
4
作者 韩永利 陈龙珠 《Transactions of Tianjin University》 EI CAS 2008年第6期434-440,共7页
With the increase of domestic gas consumption in cities and towns in China,gas explo-sion accidents happened rather frequently,and many structures were damaged greatly.Rational physical design could protect structures... With the increase of domestic gas consumption in cities and towns in China,gas explo-sion accidents happened rather frequently,and many structures were damaged greatly.Rational physical design could protect structures from being destroyed,but the character of explosion load must be learned firstly by establishing a correct mechanical model to simulate vented gas explo-sions.The explosion process has been studied for many years towards the safety of chemical in-dustry equipments.The key problem of these studies was the equations usually involved some ad-justable parameters that must be evaluated by experimental data,and the procedure of calculation was extremely complicated,so the reliability of these studies was seriously limited.Based on these studies,a simple mathematical model was established in this paper by using energy conservation,mass conservation,gas state equation,adiabatic compression equation and gas venting equation.Explosion load must be estimated by considering the room layout; the rate of pressure rise was then corrected by using a turbulence factor,so the pressure-time curve could be obtained.By using this method,complicated calculation was avoided,while experimental and calculated results fitted fairly well.Some pressure-time curves in a typical rectangular room were calculated to inves-tigate the influences of different ignition locations,gas thickness,concentration,room size and venting area on the explosion pressure.The results indicated that: it was the most dangerous con-dition when being ignited in the geometry centre of the room; the greater the burning velocity,the worse the venting effect; the larger the venting pressure,the higher the peak pressure; the larger the venting area,the lower the peak pressure. 展开更多
关键词 gas explosion mechanical model VENTING peak pressure turbulence factor
下载PDF
Study on explosion process of methane-coal dust mixture
5
作者 Guang-Dong GONG Chun-Hua BAI Qing-Ming LIU 《Journal of Coal Science & Engineering(China)》 2013年第3期332-336,共5页
The experimental system of 10 m3 large-scale multiphase combustion explosion tank was used for research into the explosion development process under the ignition conditions of methane-coal dust-air mixture, and the ov... The experimental system of 10 m3 large-scale multiphase combustion explosion tank was used for research into the explosion development process under the ignition conditions of methane-coal dust-air mixture, and the overpressure development processes of the mixture at different distances were obtained. For the methane-coal dust-air mixture with an equivalence ratio of 1, the explosion pressure and pressure rise rate reached their maximum under a methane concentration of 8% and a coal dust concentration of 25 g/m3, while the maximum explosion pressure and pressure rise rate both occurred 0.5 m away from the ignition point under a methane concentration of between 4.5% and 8%, and a coal dust concentration of between 25 g/m3 and 1 O0 g/m3. Moreover, the greater the explosion intensity of mixture, the closer the occurrence location of maximum overpres- sure was to the ignition source. 展开更多
关键词 METHANE coal dust explosion
下载PDF
Explosive characteristics of nanometer and micrometer aluminum-powder
6
作者 Jiang Bingyou Lin Baiquan +2 位作者 Shi Shulei Zhu Chuanjie Li Wenxia 《Mining Science and Technology》 EI CAS 2011年第5期661-666,共6页
The explosive characteristics of aluminum powder have great significance in preventing and controlling aluminum-dust explosion accidents, especially the nano-aluminum powder. The explosion characteristics of 100 nm an... The explosive characteristics of aluminum powder have great significance in preventing and controlling aluminum-dust explosion accidents, especially the nano-aluminum powder. The explosion characteristics of 100 nm and 75 μm aluminum powders were investigated by using a 20 L spherical explosion cavity and a horizontal pipe whose cross-section area is 80 mm × 80 mm and length is 8 m. The results show that the maximum explosion pressure and its rising rate of 100 nm aluminum powder gradually increase with increasing concentration of aluminum-powder at the beginning. When aluminum-powder concentration is I kg/m3, the maximum explosion pressure reaches its maximum, and then gradually decreases. While when the concentration is 1.25 kg/m3, the maximum rate of pressure rise obtains its maximum, and then decreases. After 100 nm aluminum powder is exploded in pipes, the peak overpressure of blast wave first decreases and then increases to the maximum at a distance of 298 cm from the ignition source, and then gradually decreases. The most violent concentration is about 0.4 kg/m3 which is lower than 0.8 kg/m3 of 75 μm aluminum powder, so 100 nm aluminum powders are more easily exploded. The change laws of maximum explosion pressure, maximum rate of pressure rise and blast-wave peak overpressure of 100 nm aluminum powders with concentration are similar to those of 75 ktm aluminum powders, but these values are much higher than 75 Bm aluminum powders under the same concentration, so the aluminum-powders explosion of 100 nm will produce more harms. In the process of production, storage and transportation of aluminum powder, some relevant preventive measures can be taken to reduce the loss caused by aluminum-dust explosion according to nano-aluminum dust. 展开更多
关键词 Nano-aluminum powderExplosion pressureRate of pressure risePeak overpressure
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部