为了测量反应堆内中子注量率分布,保证反应堆内活化55 M n-58 Ni合金探测片γ计数测量的可靠性,本文研制了中子注量率分布测量装置中9通道放大甄别器。多通道放大甄别器性能指标测试与应用测试结果表明:每个通道放大器增益1~21连续...为了测量反应堆内中子注量率分布,保证反应堆内活化55 M n-58 Ni合金探测片γ计数测量的可靠性,本文研制了中子注量率分布测量装置中9通道放大甄别器。多通道放大甄别器性能指标测试与应用测试结果表明:每个通道放大器增益1~21连续可调、甄别器阈值独立连续可调,具有最大计数率高、灵敏度高、稳定性好、系统抗串扰能力强等优点;放大器增益长期稳定性≤1%,甄别器最小输入脉冲宽度≥0.1μs ,甄别器最大计数率≤4×106 s-1,能用于实时长期稳定测量反应堆内中子注量率分布。展开更多
Since January 2012,the National Satellite Ocean Application Service has released operational wind products from the HY-2A scatterometer(HY2-SCAT),using the maximum-likelihood estimation(MLE) method with a median filte...Since January 2012,the National Satellite Ocean Application Service has released operational wind products from the HY-2A scatterometer(HY2-SCAT),using the maximum-likelihood estimation(MLE) method with a median filter. However,the quality of the winds retrieved from HY2-SCAT depends on the sub-satellite cross-track location,and poor azimuth separation in the nadir region causes particularly low-quality wind products in this region. However,an improved scheme,i.e.,a multiple solution scheme(MSS) with a two-dimensional variational analysis method(2DVAR),has been proposed by the Royal Netherlands Meteorological Institute to overcome such problems. The present study used the MSS in combination with a 2DVAR technique to retrieve wind data from HY2-SCAT observations. The parameter of the empirical probability function,used to indicate the probability of each ambiguous solution being the "true" wind,was estimated based on HY2-SCAT data,and the 2DVAR method used to remove ambiguity in the wind direction. A comparison between MSS and ECMWF winds showed larger deviations at both low wind speeds(below 4 m/s) and high wind speeds(above 17 m/s),whereas the wind direction exhibited lower bias and good stability,even at high wind speeds greater than 24 m/s. The two HY2-SCAT wind data sets,retrieved by the standard MLE and the MSS procedures were compared with buoy observations. The RMS error of wind speed and direction were 1.3 m/s and 17.4°,and 1.3 m/s and 24.0° for the MSS and MLE wind data,respectively,indicating that MSS wind data had better agreement with the buoy data. Furthermore,the distributions of wind fields for a case study of typhoon Soulik were compared,which showed that MSS winds were spatially more consistent and meteorologically better balanced than MLE winds.展开更多
The paper introduces a new approach to estimating the T-year return-period wave height (TRPW), i.e. the wave height expected to occur in T-year, from two sets of observed extreme data and on the basis of the maximum e...The paper introduces a new approach to estimating the T-year return-period wave height (TRPW), i.e. the wave height expected to occur in T-year, from two sets of observed extreme data and on the basis of the maximum entropy principle. The main points of the approach are as follows. 1) A maximum entropy probability density function (PDF) for the extreme wave height H is derived from a Euler equation subject to some necessary and rational constraints. 2) The parameters in the function are expressed in terms of the mth moment of H. 3) This PDF is convenient to theoretical and practical applications as it is simple and its four parameters are easy to be determined from observed extreme data. An example is given for estimating the TRPW in 50 and 100 years by the present approach and by some currently used methods using observed data at two hydrographic stations.The comparison of the estimated results shows that the present approach is quite similar to the Pearson-Ⅲ and Gumbel methods.展开更多
The probability distribution analysis is per-formed for multi-timescale aerosol optical depth (AOD) using AErosol RObotic NETwork (AERONET) level 2.0 data.The maximum likelihood estimation is employed to determine the...The probability distribution analysis is per-formed for multi-timescale aerosol optical depth (AOD) using AErosol RObotic NETwork (AERONET) level 2.0 data.The maximum likelihood estimation is employed to determine the best-fit probability density function (PDF),and the statement that the fitting Weibull distribution will be light-tailed is proved true for these AOD samples.The best-fit PDF results for multi-site data show that the PDF of AOD samples with longer timescale in most sites tends to be stably represented by lognormal distribution,while Weibull distribution is a better fit for AOD samples with short timescales.The reason for this difference is ana-lyzed through tail characteristics of the two distributions,and an indicator for the selection between Weibull and lognormal distributions is suggested and validated.The result of this research is helpful for determining the most accurate AOD statistics for a given site and a given time-scale and for validating the retrieved AOD through its PDF.展开更多
基金Supported by the National High Technology Research and Development Program of China(863 Program)(No.2013AA09A505)the Shandong Joint Fund for Marine Science Research Centers(No.U1406404)+1 种基金the National Natural Science Foundation of China(No.41106152)he National Key Technology R&D Program of China(No.2013BAD13B01)
文摘Since January 2012,the National Satellite Ocean Application Service has released operational wind products from the HY-2A scatterometer(HY2-SCAT),using the maximum-likelihood estimation(MLE) method with a median filter. However,the quality of the winds retrieved from HY2-SCAT depends on the sub-satellite cross-track location,and poor azimuth separation in the nadir region causes particularly low-quality wind products in this region. However,an improved scheme,i.e.,a multiple solution scheme(MSS) with a two-dimensional variational analysis method(2DVAR),has been proposed by the Royal Netherlands Meteorological Institute to overcome such problems. The present study used the MSS in combination with a 2DVAR technique to retrieve wind data from HY2-SCAT observations. The parameter of the empirical probability function,used to indicate the probability of each ambiguous solution being the "true" wind,was estimated based on HY2-SCAT data,and the 2DVAR method used to remove ambiguity in the wind direction. A comparison between MSS and ECMWF winds showed larger deviations at both low wind speeds(below 4 m/s) and high wind speeds(above 17 m/s),whereas the wind direction exhibited lower bias and good stability,even at high wind speeds greater than 24 m/s. The two HY2-SCAT wind data sets,retrieved by the standard MLE and the MSS procedures were compared with buoy observations. The RMS error of wind speed and direction were 1.3 m/s and 17.4°,and 1.3 m/s and 24.0° for the MSS and MLE wind data,respectively,indicating that MSS wind data had better agreement with the buoy data. Furthermore,the distributions of wind fields for a case study of typhoon Soulik were compared,which showed that MSS winds were spatially more consistent and meteorologically better balanced than MLE winds.
基金the Natural Science Foundation of China under Contract No.40706012the Young Scientist Foundation of State Oceanic Administration under Contract No.2008209+1 种基金the Basic Science Operational Fund of the Ministry of Finance assigned to the Third Institute of Oceanography,State Oceanic Administration under Contract No.2007010‘863’program No.2006AA09A301
文摘The paper introduces a new approach to estimating the T-year return-period wave height (TRPW), i.e. the wave height expected to occur in T-year, from two sets of observed extreme data and on the basis of the maximum entropy principle. The main points of the approach are as follows. 1) A maximum entropy probability density function (PDF) for the extreme wave height H is derived from a Euler equation subject to some necessary and rational constraints. 2) The parameters in the function are expressed in terms of the mth moment of H. 3) This PDF is convenient to theoretical and practical applications as it is simple and its four parameters are easy to be determined from observed extreme data. An example is given for estimating the TRPW in 50 and 100 years by the present approach and by some currently used methods using observed data at two hydrographic stations.The comparison of the estimated results shows that the present approach is quite similar to the Pearson-Ⅲ and Gumbel methods.
基金supported by funds from the Chinese Global Change Research Program (Grant No.2010CB951804)the National Natural Science Foundation of China (Grant No.40830103)the China Postdoctoral Science Foundation (Grant No.20100480436)
文摘The probability distribution analysis is per-formed for multi-timescale aerosol optical depth (AOD) using AErosol RObotic NETwork (AERONET) level 2.0 data.The maximum likelihood estimation is employed to determine the best-fit probability density function (PDF),and the statement that the fitting Weibull distribution will be light-tailed is proved true for these AOD samples.The best-fit PDF results for multi-site data show that the PDF of AOD samples with longer timescale in most sites tends to be stably represented by lognormal distribution,while Weibull distribution is a better fit for AOD samples with short timescales.The reason for this difference is ana-lyzed through tail characteristics of the two distributions,and an indicator for the selection between Weibull and lognormal distributions is suggested and validated.The result of this research is helpful for determining the most accurate AOD statistics for a given site and a given time-scale and for validating the retrieved AOD through its PDF.