为了解决传统光伏阵列最大功率点追踪(maximum power point tracking,MPPT)算法易陷入局部最大功率点(local maximum power point,LMPP)的问题,本文提出一种基于自适应位置调节的飞蛾扑火(adaptive position adjustment for moth-flame ...为了解决传统光伏阵列最大功率点追踪(maximum power point tracking,MPPT)算法易陷入局部最大功率点(local maximum power point,LMPP)的问题,本文提出一种基于自适应位置调节的飞蛾扑火(adaptive position adjustment for moth-flame optimization algorithm,AMFO)MPPT控制方法,该方法在飞蛾的位置更新机制中引入自适应位置插值策略和自适应权重因子策略,提高了算法的求解精度和优化速度,使之不易陷入局部最大功率点。将改进后的算法应用于光伏系统MPPT中,仿真实验结果表明:改进后的算法相较于传统的飞蛾扑火优化(moth-flame optimization,MFO)算法、灰狼优化(grey wolf optimizer,GWO)算法和粒子群优化(particle swarm optimization,PSO)算法,在均匀光照和局部遮阴条件下的追踪速率和精度均有较大提升。展开更多
变速恒频风力发电机组在额定风速以下的最大风能追踪(Maximum Power point Tracking,MPPT)效果对于机组的效率有很大影响。现有的最大风能追踪策略不论是功率控制模式还是转速控制模式都是无风速测量下的最大风能追踪策略。究其原因,就...变速恒频风力发电机组在额定风速以下的最大风能追踪(Maximum Power point Tracking,MPPT)效果对于机组的效率有很大影响。现有的最大风能追踪策略不论是功率控制模式还是转速控制模式都是无风速测量下的最大风能追踪策略。究其原因,就在于风速无法精确测量。引入时间序列法中的自回归滑动平均模型(ARMA)对风速进行超前一步预测。根据该预测风速的大小来确定下一时刻最优功率点搜索的起始风机转速,再利用变步长转速扰动的最大风能追踪策略(爬山法)找到最优功率点。仿真表明,时间序列法对风速具有较好的预测效果,有效地缩小了最优功率点的搜索区间,缩短了搜索时间,提高了机组的运行效率。展开更多
提出了一种双级矩阵变换器(two stage matrixconverter,TSMC)直驱风力发电系统最大风能追踪控制策略。基于爬山法,通过引入中间变量实现对系统捕获风能状态进行判断,在此基础上,提出基于集成控制的最大风能追踪(maximum power point tra...提出了一种双级矩阵变换器(two stage matrixconverter,TSMC)直驱风力发电系统最大风能追踪控制策略。基于爬山法,通过引入中间变量实现对系统捕获风能状态进行判断,在此基础上,提出基于集成控制的最大风能追踪(maximum power point tracking,MPPT)算法。在Matlab中建立了TSMC风电系统仿真模型。仿真结果表明:新的MPPT算法通过对风力发电系统逆变级无功功率分阶段性的控制,不仅具有较好的准确性和稳定性,而且加快了系统捕获最大风能的速度。展开更多
文摘为了解决传统光伏阵列最大功率点追踪(maximum power point tracking,MPPT)算法易陷入局部最大功率点(local maximum power point,LMPP)的问题,本文提出一种基于自适应位置调节的飞蛾扑火(adaptive position adjustment for moth-flame optimization algorithm,AMFO)MPPT控制方法,该方法在飞蛾的位置更新机制中引入自适应位置插值策略和自适应权重因子策略,提高了算法的求解精度和优化速度,使之不易陷入局部最大功率点。将改进后的算法应用于光伏系统MPPT中,仿真实验结果表明:改进后的算法相较于传统的飞蛾扑火优化(moth-flame optimization,MFO)算法、灰狼优化(grey wolf optimizer,GWO)算法和粒子群优化(particle swarm optimization,PSO)算法,在均匀光照和局部遮阴条件下的追踪速率和精度均有较大提升。
文摘变速恒频风力发电机组在额定风速以下的最大风能追踪(Maximum Power point Tracking,MPPT)效果对于机组的效率有很大影响。现有的最大风能追踪策略不论是功率控制模式还是转速控制模式都是无风速测量下的最大风能追踪策略。究其原因,就在于风速无法精确测量。引入时间序列法中的自回归滑动平均模型(ARMA)对风速进行超前一步预测。根据该预测风速的大小来确定下一时刻最优功率点搜索的起始风机转速,再利用变步长转速扰动的最大风能追踪策略(爬山法)找到最优功率点。仿真表明,时间序列法对风速具有较好的预测效果,有效地缩小了最优功率点的搜索区间,缩短了搜索时间,提高了机组的运行效率。
文摘提出了一种双级矩阵变换器(two stage matrixconverter,TSMC)直驱风力发电系统最大风能追踪控制策略。基于爬山法,通过引入中间变量实现对系统捕获风能状态进行判断,在此基础上,提出基于集成控制的最大风能追踪(maximum power point tracking,MPPT)算法。在Matlab中建立了TSMC风电系统仿真模型。仿真结果表明:新的MPPT算法通过对风力发电系统逆变级无功功率分阶段性的控制,不仅具有较好的准确性和稳定性,而且加快了系统捕获最大风能的速度。