Improving the prediction accuracy of wind power is an effective means to reduce the impact of wind power on power grid.Therefore,we proposed an improved African vulture optimization algorithm(AVOA)to realize the predi...Improving the prediction accuracy of wind power is an effective means to reduce the impact of wind power on power grid.Therefore,we proposed an improved African vulture optimization algorithm(AVOA)to realize the prediction model of multi-objective optimization least squares support vector machine(LSSVM).Firstly,the original wind power time series was decomposed into a certain number of intrinsic modal components(IMFs)using variational modal decomposition(VMD).Secondly,random numbers in population initialization were replaced by Tent chaotic mapping,multi-objective LSSVM optimization was introduced by AVOA improved by elitist non-dominated sorting and crowding operator,and then each component was predicted.Finally,Tent multi-objective AVOA-LSSVM(TMOALSSVM)method was used to sum each component to obtain the final prediction result.The simulation results show that the improved AVOA based on Tent chaotic mapping,the improved non-dominated sorting algorithm with elite strategy,and the improved crowding operator are the optimal models for single-objective and multi-objective prediction.Among them,TMOALSSVM model has the smallest average error of stroke power values in four seasons,which are 0.0694,0.0545 and 0.0211,respectively.The average value of DS statistics in the four seasons is 0.9902,and the statistical value is the largest.The proposed model effectively predicts four seasons of wind power values on lateral and longitudinal precision,and faster and more accurately finds the optimal solution on the current solution space sets,which proves that the method has a certain scientific significance in the development of wind power prediction technology.展开更多
Missing data are a problem in geophysical surveys, and interpolation and reconstruction of missing data is part of the data processing and interpretation. Based on the sparseness of the geophysical data or the transfo...Missing data are a problem in geophysical surveys, and interpolation and reconstruction of missing data is part of the data processing and interpretation. Based on the sparseness of the geophysical data or the transform domain, we can improve the accuracy and stability of the reconstruction by transforming it to a sparse optimization problem. In this paper, we propose a mathematical model for the sparse reconstruction of data based on the LO-norm minimization. Furthermore, we discuss two types of the approximation algorithm for the LO- norm minimization according to the size and characteristics of the geophysical data: namely, the iteratively reweighted least-squares algorithm and the fast iterative hard thresholding algorithm. Theoretical and numerical analysis showed that applying the iteratively reweighted least-squares algorithm to the reconstruction of potential field data exploits its fast convergence rate, short calculation time, and high precision, whereas the fast iterative hard thresholding algorithm is more suitable for processing seismic data, moreover, its computational efficiency is better than that of the traditional iterative hard thresholding algorithm.展开更多
Traditional coal mine safety prediction methods are off-line and do not have dynamic prediction functions.The Support Vector Machine(SVM) is a new machine learning algorithm that has excellent properties.The least squ...Traditional coal mine safety prediction methods are off-line and do not have dynamic prediction functions.The Support Vector Machine(SVM) is a new machine learning algorithm that has excellent properties.The least squares support vector machine(LS-SVM) algorithm is an improved algorithm of SVM.But the common LS-SVM algorithm,used directly in safety predictions,has some problems.We have first studied gas prediction problems and the basic theory of LS-SVM.Given these problems,we have investigated the affect of the time factor about safety prediction and present an on-line prediction algorithm,based on LS-SVM.Finally,given our observed data,we used the on-line algorithm to predict gas emissions and used other related algorithm to compare its performance.The simulation results have verified the validity of the new algorithm.展开更多
With the east section of the Changji sag Zhunger Basin as a case study, both a principal curvature method and a moving least square method are elaborated. The moving least square method is introduced, for the first ti...With the east section of the Changji sag Zhunger Basin as a case study, both a principal curvature method and a moving least square method are elaborated. The moving least square method is introduced, for the first time, to fit a stratum surface. The results show that, using the same-degree base function, compared with a traditional least square method, the moving least square method can produce lower fitting errors, the fitting surface can describe the morphological characteristics of stratum surfaces more accurately and the principal curvature values vary within a wide range and may be more suitable for the prediction of the distribution of structural fractures. The moving least square method could be useful in curved surface fitting and stratum curvature analysis.展开更多
Many chemical processes can be modeled as Wiener models, which consist of a linear dynamic subsystem followed by a static nonlinear block. In this paper, an effective discrete-time adaptive control method is proposed ...Many chemical processes can be modeled as Wiener models, which consist of a linear dynamic subsystem followed by a static nonlinear block. In this paper, an effective discrete-time adaptive control method is proposed for Wiener nonlinear systems with uncertainties. The parameterization model is derived based on the inverse of the nonlinear function block. The adaptive control method is motivated by self-tuning control and is derived from a modified Clarke criterion function, which considers both tracking properties and control efforts. The uncertain parameters are updated by a recursive least squares algorithm and the control law exhibits an explicit form. The closed-loop system stability properties are discussed. To demonstrate the effectiveness of the obtained results, two groups of simulation examples including an application to composition control in a continuously stirred tank reactor(CSTR) system are studied.展开更多
This paper proposes a novel intelligent estimation algorithm in Wireless Sensor Network nodes location based on Free Search,which converts parameter estimation to on-line optimization of nonlinear function and estimat...This paper proposes a novel intelligent estimation algorithm in Wireless Sensor Network nodes location based on Free Search,which converts parameter estimation to on-line optimization of nonlinear function and estimates the coordinates of senor nodes using the Free Search optimization.Compared to the least-squares estimation algorithms,the localization accuracy has been increased significantly,which has been verified by the simulation results.展开更多
To overcome the disadvantage that the standard least squares support vector regression(LS-SVR) algorithm is not suitable to multiple-input multiple-output(MIMO) system modelling directly,an improved LS-SVR algorithm w...To overcome the disadvantage that the standard least squares support vector regression(LS-SVR) algorithm is not suitable to multiple-input multiple-output(MIMO) system modelling directly,an improved LS-SVR algorithm which was defined as multi-output least squares support vector regression(MLSSVR) was put forward by adding samples' absolute errors in objective function and applied to flatness intelligent control.To solve the poor-precision problem of the control scheme based on effective matrix in flatness control,the predictive control was introduced into the control system and the effective matrix-predictive flatness control method was proposed by combining the merits of the two methods.Simulation experiment was conducted on 900HC reversible cold roll.The performance of effective matrix method and the effective matrix-predictive control method were compared,and the results demonstrate the validity of the effective matrix-predictive control method.展开更多
By attacking the linear programming problems from their dual side,a new general algorithm for linear programming is developed.At each iteration,the algorithm finds a feasible descent search direction by handling a lea...By attacking the linear programming problems from their dual side,a new general algorithm for linear programming is developed.At each iteration,the algorithm finds a feasible descent search direction by handling a least square problem associated with the dual system,using QR decomposition technique.The new method is a combination of pivot method and interior-point method.It in fact not only reduces the possibility of difficulty arising from degeneracy,but also has the same advantages as pivot method in warm-start to resolve linear programming problems.Numerical results of a group of randomly constructed problems are very encouraging.展开更多
The Bi-LS method based on QR decomposition provides a convenient framework for de-veloping efficient subspace tracking algorithms.To overcome the shortcoming of the backsubstitution step and improve the parallel archi...The Bi-LS method based on QR decomposition provides a convenient framework for de-veloping efficient subspace tracking algorithms.To overcome the shortcoming of the backsubstitution step and improve the parallel architecture of the Bi-LS algorithms,a Bi-LS subspace tracking algorithm based on Inverse QR(IQR) decomposition is developed.The proposed IQR iterative algorithm for subspace tracking is well suited for the parallel implementation in the systolic array.Simulation results are presented to illustrate the effectiveness of the proposed IQR subspace tracking algorithm.展开更多
The multiple determination tasks of chemical properties are a classical problem in analytical chemistry. The major problem is concerned in to find the best subset of variables that better represents the compounds. The...The multiple determination tasks of chemical properties are a classical problem in analytical chemistry. The major problem is concerned in to find the best subset of variables that better represents the compounds. These variables are obtained by a spectrophotometer device. This device measures hundreds of correlated variables related with physicocbemical properties and that can be used to estimate the component of interest. The problem is the selection of a subset of informative and uncorrelated variables that help the minimization of prediction error. Classical algorithms select a subset of variables for each compound considered. In this work we propose the use of the SPEA-II (strength Pareto evolutionary algorithm II). We would like to show that the variable selection algorithm can selected just one subset used for multiple determinations using multiple linear regressions. For the case study is used wheat data obtained by NIR (near-infrared spectroscopy) spectrometry where the objective is the determination of a variable subgroup with information about E protein content (%), test weight (Kg/HI), WKT (wheat kernel texture) (%) and farinograph water absorption (%). The results of traditional techniques of multivariate calibration as the SPA (successive projections algorithm), PLS (partial least square) and mono-objective genetic algorithm are presents for comparisons. For NIR spectral analysis of protein concentration on wheat, the number of variables selected from 775 spectral variables was reduced for just 10 in the SPEA-II algorithm. The prediction error decreased from 0.2 in the classical methods to 0.09 in proposed approach, a reduction of 37%. The model using variables selected by SPEA-II had better prediction performance than classical algorithms and full-spectrum partial least-squares.展开更多
Mixed-weight least-squares (MWLS) predictive control algorithm, compared with quadratic programming (QP) method, has the advantages of reducing the computer burden, quick calculation speed and dealing with the case in...Mixed-weight least-squares (MWLS) predictive control algorithm, compared with quadratic programming (QP) method, has the advantages of reducing the computer burden, quick calculation speed and dealing with the case in which the optimization is infeasible. But it can only deal with soft constraints. In order to deal with hard constraints and guarantee feasibility, an improved algorithm is proposed by recalculating the setpoint according to the hard constraints before calculating the manipulated variable and MWLS algorithm is used to satisfy the requirement of soft constraints for the system with the input constraints and output constraints. The algorithm can not only guarantee stability of the system and zero steady state error, but also satisfy the hard constraints of input and output variables. The simulation results show the improved algorithm is feasible and effective.展开更多
This paper examines the effect on rates of achievement of the interaction of student gender and school socioeconomic status, using ordinary least squares and probit regressions. The data used is school achievement by ...This paper examines the effect on rates of achievement of the interaction of student gender and school socioeconomic status, using ordinary least squares and probit regressions. The data used is school achievement by students taking externally assessed accounting standards in their final year at New Zealand secondary schools, and covers the period 2004 to 2008. The paper concludes that the interaction of gender and school decile have a significant impact on achievement rates for Maori, Pacific Island and Asian girls relative to Maori, Pacific Island and Asian boys in low decile schools. A secondary contribution of this paper is to demonstrate that comparing the achievement of gender or socioeconomic status groups in isolation is insufficient when examining academic performance and evaluating subject curriculum. Interactions between variables need to be considered, whether they be gender and decile as this paper examines, or other variables not examined within this paper.展开更多
This study provides some insights of investors' view on auditor independence focusing on auditor switching. Hence, the purpose of this study is to examine the effect of appointing a new auditor on investors' reliabi...This study provides some insights of investors' view on auditor independence focusing on auditor switching. Hence, the purpose of this study is to examine the effect of appointing a new auditor on investors' reliability on reported earnings in financial accounts. Analyses are based on a matched-pair sample of 162 listed companies in the Bursa Malaysia for the year 2011. The results of the ordinary least squares (OLS) regression show that earnings response coefficients for auditor switching companies are significantly higher than for non-auditor switching companies. The results provide support for the contention that investors place greater reliability on the financial accounts audited by newly appointed auditors. This finding is consistent with the Malaysian audit market where long audit tenure is a common practice and auditor switching is considered rare. Findings provide support for the long discussed issue of the importance of auditor rotation in maintaining auditor independence.展开更多
MEMS (micro electro mechanical systems) inertial navigation system ~, Mll'~3) nas Been WllUly used in robots for its low-cost. The MINS and magnetometers are commonly the component parts of the attitude and headin...MEMS (micro electro mechanical systems) inertial navigation system ~, Mll'~3) nas Been WllUly used in robots for its low-cost. The MINS and magnetometers are commonly the component parts of the attitude and heading reference systems (AHRS), which provide pitch and roll angles relative to the earth gravity vector, and heading angle relative to the north. However, the performance of sen- sors with low cost AHRS is not so good. The gyros are not sensitive enough to observe the earth an- gular velocity, so the traditional technique like alignment algorithm is invalid. The measurements of gyros become useless to determine the initial attitude matrix from navigation frame to body frame. The alignment algorithm is computed by the accelerometers and magnetometers. The process is es- tablished as an optimization problem of finding the maximum eigenvector. Meanwhile the sensitive analysis with respect to the biases of accelerometers is proposed. Then the recursive least squares al- gorithm (RLSA) is introduced. The comparison between the proposed method and RLSA is provid- ed. The results demonstrate its accuracy favorably and verify the feasibility of the proposed algo- rithm.展开更多
The nonlinear least square adjustment is a head object studied in technology fields. The paper studies on the non derivative solution to the nonlinear dynamic least square adjustment and puts forward a new algorithm m...The nonlinear least square adjustment is a head object studied in technology fields. The paper studies on the non derivative solution to the nonlinear dynamic least square adjustment and puts forward a new algorithm model and its solution model. The method has little calculation load and is simple. This opens up a theoretical method to solve the linear dynamic least square adjustment.展开更多
For safe and reliable operation of lithium-ion batteries in electric vehicles,the real-time monitoring of their internal states is important.The purpose of our study is to find an easily implementable,online identific...For safe and reliable operation of lithium-ion batteries in electric vehicles,the real-time monitoring of their internal states is important.The purpose of our study is to find an easily implementable,online identification method for lithium-ion batteries in electric vehicles.In this article,we propose an equivalent circuit model structure.Based on the model structure we derive the recursive mathematical description.The recursive extended least square algorithm is introduced to estimate the model parameters online.The accuracy and robustness are validated through experiments and simulations.Real-road driving cycle experiment shows that the proposed online identification method can achieve acceptable accuracy with the maximum error of less than 5.52%.In addition,it is proved that the proposed method can also be used to estimate the real-time SOH and SOC of the batteries.展开更多
Least squares support vector machines (LS-SVMs) are modified support vector machines (SVMs) that involve equality constraints and work with a least squares cost function, which simplifies the optimization procedure. I...Least squares support vector machines (LS-SVMs) are modified support vector machines (SVMs) that involve equality constraints and work with a least squares cost function, which simplifies the optimization procedure. In this paper, a novel training algorithm based on total least squares (TLS) for an LS-SVM is presented and applied to multifunctional sensor signal reconstruction. For three different nonlinearities of a multifunctional sensor model, the reconstruction accuracies of input signals are 0.001 36%, 0.031 84% and 0.504 80%, respectively. The experimental results demonstrate the higher reliability and accuracy of the proposed method for multifunctional sensor signal reconstruction than the original LS-SVM training algorithm, and verify the feasibility and stability of the proposed method.展开更多
This paper addresses the learning algorithm on the unit sphere.The main purpose is to present an error analysis for regression generated by regularized least square algorithms with spherical harmonics kernel.The exces...This paper addresses the learning algorithm on the unit sphere.The main purpose is to present an error analysis for regression generated by regularized least square algorithms with spherical harmonics kernel.The excess error can be estimated by the sum of sample errors and regularization errors.Our study shows that by introducing a suitable spherical harmonics kernel,the regularization parameter can decrease arbitrarily fast with the sample size.展开更多
A new approach called the robust structured total least squares(RSTLS) algorithm is described for solving location inaccuracy caused by outliers in the single-observer passive location. It is built within the weighted...A new approach called the robust structured total least squares(RSTLS) algorithm is described for solving location inaccuracy caused by outliers in the single-observer passive location. It is built within the weighted structured total least squares(WSTLS)framework and improved based on the robust estimation theory.Moreover, the improved Danish weight function is proposed according to the robust extremal function of the WSTLS, so that the new algorithm can detect outliers based on residuals and reduce the weights of outliers automatically. Finally, the inverse iteration method is discussed to deal with the RSTLS problem. Simulations show that when outliers appear, the result of the proposed algorithm is still accurate and robust, whereas that of the conventional algorithms is distorted seriously.展开更多
基金supported by National Natural Science Foundation of China(Nos.61662042,62062049)Science and Technology Plan of Gansu Province(Nos.21JR7RA288,21JR7RE174).
文摘Improving the prediction accuracy of wind power is an effective means to reduce the impact of wind power on power grid.Therefore,we proposed an improved African vulture optimization algorithm(AVOA)to realize the prediction model of multi-objective optimization least squares support vector machine(LSSVM).Firstly,the original wind power time series was decomposed into a certain number of intrinsic modal components(IMFs)using variational modal decomposition(VMD).Secondly,random numbers in population initialization were replaced by Tent chaotic mapping,multi-objective LSSVM optimization was introduced by AVOA improved by elitist non-dominated sorting and crowding operator,and then each component was predicted.Finally,Tent multi-objective AVOA-LSSVM(TMOALSSVM)method was used to sum each component to obtain the final prediction result.The simulation results show that the improved AVOA based on Tent chaotic mapping,the improved non-dominated sorting algorithm with elite strategy,and the improved crowding operator are the optimal models for single-objective and multi-objective prediction.Among them,TMOALSSVM model has the smallest average error of stroke power values in four seasons,which are 0.0694,0.0545 and 0.0211,respectively.The average value of DS statistics in the four seasons is 0.9902,and the statistical value is the largest.The proposed model effectively predicts four seasons of wind power values on lateral and longitudinal precision,and faster and more accurately finds the optimal solution on the current solution space sets,which proves that the method has a certain scientific significance in the development of wind power prediction technology.
基金supported by the National Natural Science Foundation of China (Grant No.41074133)
文摘Missing data are a problem in geophysical surveys, and interpolation and reconstruction of missing data is part of the data processing and interpretation. Based on the sparseness of the geophysical data or the transform domain, we can improve the accuracy and stability of the reconstruction by transforming it to a sparse optimization problem. In this paper, we propose a mathematical model for the sparse reconstruction of data based on the LO-norm minimization. Furthermore, we discuss two types of the approximation algorithm for the LO- norm minimization according to the size and characteristics of the geophysical data: namely, the iteratively reweighted least-squares algorithm and the fast iterative hard thresholding algorithm. Theoretical and numerical analysis showed that applying the iteratively reweighted least-squares algorithm to the reconstruction of potential field data exploits its fast convergence rate, short calculation time, and high precision, whereas the fast iterative hard thresholding algorithm is more suitable for processing seismic data, moreover, its computational efficiency is better than that of the traditional iterative hard thresholding algorithm.
文摘Traditional coal mine safety prediction methods are off-line and do not have dynamic prediction functions.The Support Vector Machine(SVM) is a new machine learning algorithm that has excellent properties.The least squares support vector machine(LS-SVM) algorithm is an improved algorithm of SVM.But the common LS-SVM algorithm,used directly in safety predictions,has some problems.We have first studied gas prediction problems and the basic theory of LS-SVM.Given these problems,we have investigated the affect of the time factor about safety prediction and present an on-line prediction algorithm,based on LS-SVM.Finally,given our observed data,we used the on-line algorithm to predict gas emissions and used other related algorithm to compare its performance.The simulation results have verified the validity of the new algorithm.
基金Projects 2007CB209405 and 2002CB412702 supported by the National Basic Research Program of ChinaKZCX2-YW-113 by the Important Directive Item of the Knowledge Innovation Project of Chinese Academy of Sciences 40772100 by the National Natural Science Foundation of China
文摘With the east section of the Changji sag Zhunger Basin as a case study, both a principal curvature method and a moving least square method are elaborated. The moving least square method is introduced, for the first time, to fit a stratum surface. The results show that, using the same-degree base function, compared with a traditional least square method, the moving least square method can produce lower fitting errors, the fitting surface can describe the morphological characteristics of stratum surfaces more accurately and the principal curvature values vary within a wide range and may be more suitable for the prediction of the distribution of structural fractures. The moving least square method could be useful in curved surface fitting and stratum curvature analysis.
基金Supported by the National Natural Science Foundation of China(61473072)
文摘Many chemical processes can be modeled as Wiener models, which consist of a linear dynamic subsystem followed by a static nonlinear block. In this paper, an effective discrete-time adaptive control method is proposed for Wiener nonlinear systems with uncertainties. The parameterization model is derived based on the inverse of the nonlinear function block. The adaptive control method is motivated by self-tuning control and is derived from a modified Clarke criterion function, which considers both tracking properties and control efforts. The uncertain parameters are updated by a recursive least squares algorithm and the control law exhibits an explicit form. The closed-loop system stability properties are discussed. To demonstrate the effectiveness of the obtained results, two groups of simulation examples including an application to composition control in a continuously stirred tank reactor(CSTR) system are studied.
基金National Research Foundation for the Doctoral Program of Higher Education of China(No.20060266006)the High-school Natural Science Research Foundation of Jiangsu Province(No.07KJB510095)
文摘This paper proposes a novel intelligent estimation algorithm in Wireless Sensor Network nodes location based on Free Search,which converts parameter estimation to on-line optimization of nonlinear function and estimates the coordinates of senor nodes using the Free Search optimization.Compared to the least-squares estimation algorithms,the localization accuracy has been increased significantly,which has been verified by the simulation results.
基金Project(50675186) supported by the National Natural Science Foundation of China
文摘To overcome the disadvantage that the standard least squares support vector regression(LS-SVR) algorithm is not suitable to multiple-input multiple-output(MIMO) system modelling directly,an improved LS-SVR algorithm which was defined as multi-output least squares support vector regression(MLSSVR) was put forward by adding samples' absolute errors in objective function and applied to flatness intelligent control.To solve the poor-precision problem of the control scheme based on effective matrix in flatness control,the predictive control was introduced into the control system and the effective matrix-predictive flatness control method was proposed by combining the merits of the two methods.Simulation experiment was conducted on 900HC reversible cold roll.The performance of effective matrix method and the effective matrix-predictive control method were compared,and the results demonstrate the validity of the effective matrix-predictive control method.
文摘By attacking the linear programming problems from their dual side,a new general algorithm for linear programming is developed.At each iteration,the algorithm finds a feasible descent search direction by handling a least square problem associated with the dual system,using QR decomposition technique.The new method is a combination of pivot method and interior-point method.It in fact not only reduces the possibility of difficulty arising from degeneracy,but also has the same advantages as pivot method in warm-start to resolve linear programming problems.Numerical results of a group of randomly constructed problems are very encouraging.
基金Supported in part by the 973 Program (No.2008CB-317109)the National Natural Science Foundation of China (No.60572054)the SRF for ROCS, SEM
文摘The Bi-LS method based on QR decomposition provides a convenient framework for de-veloping efficient subspace tracking algorithms.To overcome the shortcoming of the backsubstitution step and improve the parallel architecture of the Bi-LS algorithms,a Bi-LS subspace tracking algorithm based on Inverse QR(IQR) decomposition is developed.The proposed IQR iterative algorithm for subspace tracking is well suited for the parallel implementation in the systolic array.Simulation results are presented to illustrate the effectiveness of the proposed IQR subspace tracking algorithm.
文摘The multiple determination tasks of chemical properties are a classical problem in analytical chemistry. The major problem is concerned in to find the best subset of variables that better represents the compounds. These variables are obtained by a spectrophotometer device. This device measures hundreds of correlated variables related with physicocbemical properties and that can be used to estimate the component of interest. The problem is the selection of a subset of informative and uncorrelated variables that help the minimization of prediction error. Classical algorithms select a subset of variables for each compound considered. In this work we propose the use of the SPEA-II (strength Pareto evolutionary algorithm II). We would like to show that the variable selection algorithm can selected just one subset used for multiple determinations using multiple linear regressions. For the case study is used wheat data obtained by NIR (near-infrared spectroscopy) spectrometry where the objective is the determination of a variable subgroup with information about E protein content (%), test weight (Kg/HI), WKT (wheat kernel texture) (%) and farinograph water absorption (%). The results of traditional techniques of multivariate calibration as the SPA (successive projections algorithm), PLS (partial least square) and mono-objective genetic algorithm are presents for comparisons. For NIR spectral analysis of protein concentration on wheat, the number of variables selected from 775 spectral variables was reduced for just 10 in the SPEA-II algorithm. The prediction error decreased from 0.2 in the classical methods to 0.09 in proposed approach, a reduction of 37%. The model using variables selected by SPEA-II had better prediction performance than classical algorithms and full-spectrum partial least-squares.
基金National Key Basic Research and Development(No.2002CB312200)
文摘Mixed-weight least-squares (MWLS) predictive control algorithm, compared with quadratic programming (QP) method, has the advantages of reducing the computer burden, quick calculation speed and dealing with the case in which the optimization is infeasible. But it can only deal with soft constraints. In order to deal with hard constraints and guarantee feasibility, an improved algorithm is proposed by recalculating the setpoint according to the hard constraints before calculating the manipulated variable and MWLS algorithm is used to satisfy the requirement of soft constraints for the system with the input constraints and output constraints. The algorithm can not only guarantee stability of the system and zero steady state error, but also satisfy the hard constraints of input and output variables. The simulation results show the improved algorithm is feasible and effective.
文摘This paper examines the effect on rates of achievement of the interaction of student gender and school socioeconomic status, using ordinary least squares and probit regressions. The data used is school achievement by students taking externally assessed accounting standards in their final year at New Zealand secondary schools, and covers the period 2004 to 2008. The paper concludes that the interaction of gender and school decile have a significant impact on achievement rates for Maori, Pacific Island and Asian girls relative to Maori, Pacific Island and Asian boys in low decile schools. A secondary contribution of this paper is to demonstrate that comparing the achievement of gender or socioeconomic status groups in isolation is insufficient when examining academic performance and evaluating subject curriculum. Interactions between variables need to be considered, whether they be gender and decile as this paper examines, or other variables not examined within this paper.
文摘This study provides some insights of investors' view on auditor independence focusing on auditor switching. Hence, the purpose of this study is to examine the effect of appointing a new auditor on investors' reliability on reported earnings in financial accounts. Analyses are based on a matched-pair sample of 162 listed companies in the Bursa Malaysia for the year 2011. The results of the ordinary least squares (OLS) regression show that earnings response coefficients for auditor switching companies are significantly higher than for non-auditor switching companies. The results provide support for the contention that investors place greater reliability on the financial accounts audited by newly appointed auditors. This finding is consistent with the Malaysian audit market where long audit tenure is a common practice and auditor switching is considered rare. Findings provide support for the long discussed issue of the importance of auditor rotation in maintaining auditor independence.
基金Supported by the National Natural Science Foundation of China(No.60905056)
文摘MEMS (micro electro mechanical systems) inertial navigation system ~, Mll'~3) nas Been WllUly used in robots for its low-cost. The MINS and magnetometers are commonly the component parts of the attitude and heading reference systems (AHRS), which provide pitch and roll angles relative to the earth gravity vector, and heading angle relative to the north. However, the performance of sen- sors with low cost AHRS is not so good. The gyros are not sensitive enough to observe the earth an- gular velocity, so the traditional technique like alignment algorithm is invalid. The measurements of gyros become useless to determine the initial attitude matrix from navigation frame to body frame. The alignment algorithm is computed by the accelerometers and magnetometers. The process is es- tablished as an optimization problem of finding the maximum eigenvector. Meanwhile the sensitive analysis with respect to the biases of accelerometers is proposed. Then the recursive least squares al- gorithm (RLSA) is introduced. The comparison between the proposed method and RLSA is provid- ed. The results demonstrate its accuracy favorably and verify the feasibility of the proposed algo- rithm.
文摘The nonlinear least square adjustment is a head object studied in technology fields. The paper studies on the non derivative solution to the nonlinear dynamic least square adjustment and puts forward a new algorithm model and its solution model. The method has little calculation load and is simple. This opens up a theoretical method to solve the linear dynamic least square adjustment.
基金supported by the National High Technology Research and Development Program("863" Project)(Grant No.2011AA05A109)the International Science and Technology Cooperation Program of China(Grant Nos.2011DFA70570,2010DFA72760)the National Natural Science Foundation of China(Grant No.51007088)
文摘For safe and reliable operation of lithium-ion batteries in electric vehicles,the real-time monitoring of their internal states is important.The purpose of our study is to find an easily implementable,online identification method for lithium-ion batteries in electric vehicles.In this article,we propose an equivalent circuit model structure.Based on the model structure we derive the recursive mathematical description.The recursive extended least square algorithm is introduced to estimate the model parameters online.The accuracy and robustness are validated through experiments and simulations.Real-road driving cycle experiment shows that the proposed online identification method can achieve acceptable accuracy with the maximum error of less than 5.52%.In addition,it is proved that the proposed method can also be used to estimate the real-time SOH and SOC of the batteries.
基金the National Natural Science Foundation of China (Nos. 60772007 and 60672008)China Postdoctoral Sci-ence Foundation (No. 20070410258)
文摘Least squares support vector machines (LS-SVMs) are modified support vector machines (SVMs) that involve equality constraints and work with a least squares cost function, which simplifies the optimization procedure. In this paper, a novel training algorithm based on total least squares (TLS) for an LS-SVM is presented and applied to multifunctional sensor signal reconstruction. For three different nonlinearities of a multifunctional sensor model, the reconstruction accuracies of input signals are 0.001 36%, 0.031 84% and 0.504 80%, respectively. The experimental results demonstrate the higher reliability and accuracy of the proposed method for multifunctional sensor signal reconstruction than the original LS-SVM training algorithm, and verify the feasibility and stability of the proposed method.
基金supported by National Natural Science Foundation of China (Grant Nos. 61272023 and 61075054)
文摘This paper addresses the learning algorithm on the unit sphere.The main purpose is to present an error analysis for regression generated by regularized least square algorithms with spherical harmonics kernel.The excess error can be estimated by the sum of sample errors and regularization errors.Our study shows that by introducing a suitable spherical harmonics kernel,the regularization parameter can decrease arbitrarily fast with the sample size.
基金supported by the National Natural Science Foundation of China(61202490)
文摘A new approach called the robust structured total least squares(RSTLS) algorithm is described for solving location inaccuracy caused by outliers in the single-observer passive location. It is built within the weighted structured total least squares(WSTLS)framework and improved based on the robust estimation theory.Moreover, the improved Danish weight function is proposed according to the robust extremal function of the WSTLS, so that the new algorithm can detect outliers based on residuals and reduce the weights of outliers automatically. Finally, the inverse iteration method is discussed to deal with the RSTLS problem. Simulations show that when outliers appear, the result of the proposed algorithm is still accurate and robust, whereas that of the conventional algorithms is distorted seriously.