最小二乘支持向量机(Least Squares Support Vector Machine,LSSVM)通过求解一个线性等式方程组来提高支持向量机(Support Vector Machine,SVM)的运算速度。但是,LSSVM没有考虑间隔分布对于LSSVM模型的影响,导致其精度较低。为了增强LS...最小二乘支持向量机(Least Squares Support Vector Machine,LSSVM)通过求解一个线性等式方程组来提高支持向量机(Support Vector Machine,SVM)的运算速度。但是,LSSVM没有考虑间隔分布对于LSSVM模型的影响,导致其精度较低。为了增强LSSVM模型的泛化性能,提高其分类能力,提出一种具有间隔分布优化的最小二乘支持向量机(LSSVM with margin distribution optimization,MLSSVM)。首先,重新定义间隔均值和间隔方差,深入挖掘数据的间隔分布信息,增强模型的泛化性能;其次,引入权重线性损失,进一步优化了间隔均值,提升模型的分类精度;然后,分析目标函数,剔除冗余项,进一步优化间隔方差;最后,保留LSSVM的求解机制,保障模型的计算效率。实验表明,新提出的分类模型具有良好的泛化性能和运行时间。展开更多
针对锂电池剩余寿命预测的直接健康因子难以测量以及预测精度不高等问题,提出一种改进灰狼优化最小二乘支持向量机(improved gray wolf optimization least-squares support vector machine, IGWO-LSSVM)的锂电池剩余寿命间接预测方法...针对锂电池剩余寿命预测的直接健康因子难以测量以及预测精度不高等问题,提出一种改进灰狼优化最小二乘支持向量机(improved gray wolf optimization least-squares support vector machine, IGWO-LSSVM)的锂电池剩余寿命间接预测方法。该方法从电池放电特性曲线中获取3种表征电池性能退化的间接健康因子,通过引入tent混沌映射、收敛因子非线性递减与莱维飞行策略对灰狼算法加以改进,并结合LS-SVM模型,形成了具有全局优化的改进灰狼优化最小二乘支持向量机的锂电池寿命预测模型。最后利用NASA数据集对文中提出的方法进行了验证,并将实验结果与GWO-LSSVM、PSO-ELM和BP神经网络算法进行了对比分析,试验结果表明文中所提出的改进算法具有更好的预测性能。展开更多
文摘最小二乘支持向量机(Least Squares Support Vector Machine,LSSVM)通过求解一个线性等式方程组来提高支持向量机(Support Vector Machine,SVM)的运算速度。但是,LSSVM没有考虑间隔分布对于LSSVM模型的影响,导致其精度较低。为了增强LSSVM模型的泛化性能,提高其分类能力,提出一种具有间隔分布优化的最小二乘支持向量机(LSSVM with margin distribution optimization,MLSSVM)。首先,重新定义间隔均值和间隔方差,深入挖掘数据的间隔分布信息,增强模型的泛化性能;其次,引入权重线性损失,进一步优化了间隔均值,提升模型的分类精度;然后,分析目标函数,剔除冗余项,进一步优化间隔方差;最后,保留LSSVM的求解机制,保障模型的计算效率。实验表明,新提出的分类模型具有良好的泛化性能和运行时间。
文摘针对锂电池剩余寿命预测的直接健康因子难以测量以及预测精度不高等问题,提出一种改进灰狼优化最小二乘支持向量机(improved gray wolf optimization least-squares support vector machine, IGWO-LSSVM)的锂电池剩余寿命间接预测方法。该方法从电池放电特性曲线中获取3种表征电池性能退化的间接健康因子,通过引入tent混沌映射、收敛因子非线性递减与莱维飞行策略对灰狼算法加以改进,并结合LS-SVM模型,形成了具有全局优化的改进灰狼优化最小二乘支持向量机的锂电池寿命预测模型。最后利用NASA数据集对文中提出的方法进行了验证,并将实验结果与GWO-LSSVM、PSO-ELM和BP神经网络算法进行了对比分析,试验结果表明文中所提出的改进算法具有更好的预测性能。