期刊文献+
共找到40篇文章
< 1 2 >
每页显示 20 50 100
Improved AVOA based on LSSVM for wind power prediction
1
作者 ZHANG Zhonglin WEI Fan +1 位作者 YAN Guanghui MA Haiyun 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2024年第3期344-359,共16页
Improving the prediction accuracy of wind power is an effective means to reduce the impact of wind power on power grid.Therefore,we proposed an improved African vulture optimization algorithm(AVOA)to realize the predi... Improving the prediction accuracy of wind power is an effective means to reduce the impact of wind power on power grid.Therefore,we proposed an improved African vulture optimization algorithm(AVOA)to realize the prediction model of multi-objective optimization least squares support vector machine(LSSVM).Firstly,the original wind power time series was decomposed into a certain number of intrinsic modal components(IMFs)using variational modal decomposition(VMD).Secondly,random numbers in population initialization were replaced by Tent chaotic mapping,multi-objective LSSVM optimization was introduced by AVOA improved by elitist non-dominated sorting and crowding operator,and then each component was predicted.Finally,Tent multi-objective AVOA-LSSVM(TMOALSSVM)method was used to sum each component to obtain the final prediction result.The simulation results show that the improved AVOA based on Tent chaotic mapping,the improved non-dominated sorting algorithm with elite strategy,and the improved crowding operator are the optimal models for single-objective and multi-objective prediction.Among them,TMOALSSVM model has the smallest average error of stroke power values in four seasons,which are 0.0694,0.0545 and 0.0211,respectively.The average value of DS statistics in the four seasons is 0.9902,and the statistical value is the largest.The proposed model effectively predicts four seasons of wind power values on lateral and longitudinal precision,and faster and more accurately finds the optimal solution on the current solution space sets,which proves that the method has a certain scientific significance in the development of wind power prediction technology. 展开更多
关键词 African vulture optimization algorithm(AVOA) least squares support vector machine(LSSVM) variational mode decomposition(VMD) multi-objective prediction wind power
下载PDF
基于改进局部方向模式特征的人脸识别算法 被引量:1
2
作者 樊利军 魏昊 田柏林 《计算机应用与软件》 CSCD 2015年第9期166-169,234,共5页
为了提高人脸识别率和效率,提出一种改进局部方向模式特征的人脸识别算法。首先将人脸图像分割成若干不重叠的子块,采用改进局部方向模式算法提取每个子块特征,然后对所有子块的特征进行连接,构成人脸图像的特征向量,最后采用最小二乘... 为了提高人脸识别率和效率,提出一种改进局部方向模式特征的人脸识别算法。首先将人脸图像分割成若干不重叠的子块,采用改进局部方向模式算法提取每个子块特征,然后对所有子块的特征进行连接,构成人脸图像的特征向量,最后采用最小二乘支持向机对人脸图像进行识别。在多个人脸库上进行仿真实验,结果表明,该算法获得了比传统算法更高的人脸识别率,而且加快了运行时间,较好地满足人脸识别实时性要求。 展开更多
关键词 人脸识别 局部方向模式 特征提取 最小二乘支持向机
下载PDF
多尺度组分特征和位点关联特征相融合的剪接位点识别 被引量:1
3
作者 周雄 《计算机工程与应用》 CSCD 2014年第10期120-123,187,共5页
为了提高剪接位点的识别精度,提出一种多尺度组分和位点关联特征相融合的剪接位点识别模型(MSC-APR)。确定剪接位点序列保守性的窗口长度,分别提取序列的多尺度组分和位点关联特征,然后将两类特征组合输入最小二乘支持向量机构建剪接位... 为了提高剪接位点的识别精度,提出一种多尺度组分和位点关联特征相融合的剪接位点识别模型(MSC-APR)。确定剪接位点序列保守性的窗口长度,分别提取序列的多尺度组分和位点关联特征,然后将两类特征组合输入最小二乘支持向量机构建剪接位点分类器,采用数据集HS3D和NN269进行仿真实验。结果表明,MSC-APR的剪接位点识别精度明显优于对比模型的识别精度。 展开更多
关键词 剪接位点 最小二乘支持向机 位点关联特征 多尺度组分特征
下载PDF
Tribological properties and wear prediction model of TiC particles reinforced Ni-base alloy composite coatings 被引量:4
4
作者 谭业发 何龙 +2 位作者 王小龙 洪翔 王伟刚 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第8期2566-2573,共8页
TiC particles reinforced Ni-based alloy composite coatings were prepared on 7005 aluminum alloy by plasma spray. The effects of load, speed and temperature on the tribological behavior and mechanisms of the composite ... TiC particles reinforced Ni-based alloy composite coatings were prepared on 7005 aluminum alloy by plasma spray. The effects of load, speed and temperature on the tribological behavior and mechanisms of the composite coatings under dry friction were researched. The wear prediction model of the composite coatings was established based on the least square support vector machine (LS-SVM). The results show that the composite coatings exhibit smaller friction coefficients and wear losses than the Ni-based alloy coatings under different friction conditions. The predicting time of the LS-SVM model is only 12.93%of that of the BP-ANN model, and the predicting accuracies on friction coefficients and wear losses of the former are increased by 58.74%and 41.87%compared with the latter. The LS-SVM model can effectively predict the tribological behavior of the TiCP/Ni-base alloy composite coatings under dry friction. 展开更多
关键词 TiC particles Ni-based alloy composite coating least square support vector machine(LS-SVM) wear prediction model
下载PDF
Grain Yield Prediction for Irrigation District Based on LS-SVM 被引量:5
5
作者 宰松梅 贾艳辉 +1 位作者 温季 郭冬冬 《Agricultural Science & Technology》 CAS 2009年第6期1-3,6,共4页
Commonly used grain yield forecasting models were briefly reviewed, and a yield prediction model of irrigation district was established based on least squares support vector machines (LS-SVM). The grain yield in irr... Commonly used grain yield forecasting models were briefly reviewed, and a yield prediction model of irrigation district was established based on least squares support vector machines (LS-SVM). The grain yield in irrigation district was analog calculated. And the test samples were used to compare with gray prediction, and neural network model. The maximum predicted error of least squares SVM was 7.12%, with an average error of 4.81%. The results showed that LS-SVM model has high prediction accuracy and strong generalization ability. So it could be used as a new method for irrigation district yield prediction 展开更多
关键词 YIELD PREDICTION LS-SVM MODEL
下载PDF
NOVEL WEIGHTED LEAST SQUARES SUPPORT VECTOR REGRESSION FOR THRUST ESTIMATION ON PERFORMANCE DETERIORATION OF AERO-ENGINE 被引量:2
6
作者 苏伟生 赵永平 孙健国 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2012年第1期25-32,共8页
A thrust estimator with high precision and excellent real-time performance is needed to mitigate perfor- mance deterioration for future aero-engines. A weight least squares support vector regression is proposed using ... A thrust estimator with high precision and excellent real-time performance is needed to mitigate perfor- mance deterioration for future aero-engines. A weight least squares support vector regression is proposed using a novel weighting strategy. Then a thrust estimator based on the proposed regression is designed for the perfor- mance deterioration. Compared with the existing weighting strategy, the novel one not only satisfies the require- ment of precision but also enhances the real-time performance. Finally, numerical experiments demonstrate the effectiveness and feasibility of the proposed weighted least squares support vector regression for thrust estimator. Key words : intelligent engine control; least squares ; support vector machine ; performance deterioration 展开更多
关键词 intelligent engine control least squares support vector machine performance deterioration
下载PDF
BOOSTING SPARSE LEAST SQUARES SUPPORT VECTOR REGRESSION (BSLSSVR) AND ITS APPLICATION TO THRUST ESTIMATION 被引量:2
7
作者 赵永平 孙健国 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2008年第4期254-261,共8页
In order to realize direct thrust control instead of conventional sensors-based control for aero-engine, a thrust estimator with high accuracy is designed by using the boosting technique to improve the performance of ... In order to realize direct thrust control instead of conventional sensors-based control for aero-engine, a thrust estimator with high accuracy is designed by using the boosting technique to improve the performance of least squares support vector regression (LSSVR). There exist two distinct features compared with the conven- tional boosting technique: (1) Sampling without replacement is used to avoid numerical instability for modeling LSSVR. (2) To realize the sparseness of LSSVR and reduce the computational complexity, only a subset of the training samples is used to construct LSSVR. Thus, this boosting method for LSSVR is called the boosting sparse LSSVR (BSLSSVR). Finally, simulation results show that BSLSSVR-based thrust estimator can satisfy the requirement of direct thrust control, i.e. , maximum absolute value of relative error of thrust estimation is not more than 5‰. 展开更多
关键词 least squares support vector machines direct thrust control boosting technique
下载PDF
Semi-supervised least squares support vector machine algorithm:application to offshore oil reservoir 被引量:1
8
作者 罗伟平 李洪奇 石宁 《Applied Geophysics》 SCIE CSCD 2016年第2期406-415,421,共11页
At the early stages of deep-water oil exploration and development, fewer and further apart wells are drilled than in onshore oilfields. Supervised least squares support vector machine algorithms are used to predict th... At the early stages of deep-water oil exploration and development, fewer and further apart wells are drilled than in onshore oilfields. Supervised least squares support vector machine algorithms are used to predict the reservoir parameters but the prediction accuracy is low. We combined the least squares support vector machine (LSSVM) algorithm with semi-supervised learning and established a semi-supervised regression model, which we call the semi-supervised least squares support vector machine (SLSSVM) model. The iterative matrix inversion is also introduced to improve the training ability and training time of the model. We use the UCI data to test the generalization of a semi-supervised and a supervised LSSVM models. The test results suggest that the generalization performance of the LSSVM model greatly improves and with decreasing training samples the generalization performance is better. Moreover, for small-sample models, the SLSSVM method has higher precision than the semi-supervised K-nearest neighbor (SKNN) method. The new semi- supervised LSSVM algorithm was used to predict the distribution of porosity and sandstone in the Jingzhou study area. 展开更多
关键词 Semi-supervised learning least squares support vector machine seismic attributes reservoir prediction
下载PDF
Identification on rock and soil parameters for vibration drilling rock in metal mine based on fuzzy least square support vector machine 被引量:11
9
作者 左红艳 罗周全 +1 位作者 管佳林 王益伟 《Journal of Central South University》 SCIE EI CAS 2014年第3期1085-1090,共6页
A single freedom degree model of drilling bit-rock was established according to the vibration mechanism and its dynamic characteristics. Moreover, a novel identification method of rock and soil parameters for vibratio... A single freedom degree model of drilling bit-rock was established according to the vibration mechanism and its dynamic characteristics. Moreover, a novel identification method of rock and soil parameters for vibration drilling based on the fuzzy least squares(FLS)-support vector machine(SVM) was developed, in which the fuzzy membership function was set by using linear distance, and its parameters, such as penalty factor and kernel parameter, were optimized by using adaptive genetic algorithm. And FLS-SVM identification on rock and soil parameters for vibration drilling was made by changing the input/output data from single freedom degree model of drilling bit-rock. The results of identification simulation and resonance column experiment show that relative error of natural frequency for some hard sand from identification simulation and resonance column experiment is 1.1% and the identification precision based on the fuzzy least squares-support vector machine is high. 展开更多
关键词 rock and soil fuzzy theory vibration excavation least squares-support vector machine IDENTIFICATION
下载PDF
On-line least squares support vector machine algorithm in gas prediction 被引量:21
10
作者 ZHAO Xiao-hu WANG Gang ZHAO Ke-ke TAN De-jian 《Mining Science and Technology》 EI CAS 2009年第2期194-198,共5页
Traditional coal mine safety prediction methods are off-line and do not have dynamic prediction functions.The Support Vector Machine(SVM) is a new machine learning algorithm that has excellent properties.The least squ... Traditional coal mine safety prediction methods are off-line and do not have dynamic prediction functions.The Support Vector Machine(SVM) is a new machine learning algorithm that has excellent properties.The least squares support vector machine(LS-SVM) algorithm is an improved algorithm of SVM.But the common LS-SVM algorithm,used directly in safety predictions,has some problems.We have first studied gas prediction problems and the basic theory of LS-SVM.Given these problems,we have investigated the affect of the time factor about safety prediction and present an on-line prediction algorithm,based on LS-SVM.Finally,given our observed data,we used the on-line algorithm to predict gas emissions and used other related algorithm to compare its performance.The simulation results have verified the validity of the new algorithm. 展开更多
关键词 LS-SVM GAS on-line learning PREDICTION
下载PDF
Modeling of Isomerization of C_8 Aromatics by Online Least Squares Support Vector Machine 被引量:7
11
作者 李丽娟 苏宏业 褚建 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2009年第3期437-444,共8页
The least squares support vector regression (LS-SVR) is usually used for the modeling of single output system, but it is not well suitable for the actual multi-input-multi-output system. The paper aims at the modeling... The least squares support vector regression (LS-SVR) is usually used for the modeling of single output system, but it is not well suitable for the actual multi-input-multi-output system. The paper aims at the modeling of multi-output systems by LS-SVR. The multi-output LS-SVR is derived in detail. To avoid the inversion of large matrix, the recursive algorithm of the parameters is given, which makes the online algorithm of LS-SVR practical. Since the computing time increases with the number of training samples, the sparseness is studied based on the pro-jection of online LS-SVR. The residual of projection less than a threshold is omitted, so that a lot of samples are kept out of the training set and the sparseness is obtained. The standard LS-SVR, nonsparse online LS-SVR and sparse online LS-SVR with different threshold are used for modeling the isomerization of C8 aromatics. The root-mean-square-error (RMSE), number of support vectors and running time of three algorithms are compared and the result indicates that the performance of sparse online LS-SVR is more favorable. 展开更多
关键词 least squares support vector machine multi-variable ONLINE SPARSENESS ISOMERIZATION
下载PDF
Fuzzy least squares support vector machine soft measurement model based on adaptive mutative scale chaos immune algorithm 被引量:8
12
作者 王涛生 左红艳 《Journal of Central South University》 SCIE EI CAS 2014年第2期593-599,共7页
In order to enhance measuring precision of the real complex electromechanical system,complex industrial system and complex ecological & management system with characteristics of multi-variable,non-liner,strong cou... In order to enhance measuring precision of the real complex electromechanical system,complex industrial system and complex ecological & management system with characteristics of multi-variable,non-liner,strong coupling and large time-delay,in terms of the fuzzy character of this real complex system,a fuzzy least squares support vector machine(FLS-SVM) soft measurement model was established and its parameters were optimized by using adaptive mutative scale chaos immune algorithm.The simulation results reveal that fuzzy least squares support vector machines soft measurement model is of better approximation accuracy and robustness.And application results show that the relative errors of the soft measurement model are less than 3.34%. 展开更多
关键词 CHAOS immune algorithm FUZZY support vector machine
下载PDF
SVM model for estimating the parameters of the probability-integral method of predicting mining subsidence 被引量:11
13
作者 ZHANG Hua WANG Yun-jia LI Yong-feng 《Mining Science and Technology》 EI CAS 2009年第3期385-388,394,共5页
A new mathematical model to estimate the parameters of the probability-integral method for mining subsidence prediction is proposed.Based on least squares support vector machine(LS-SVM) theory, it is capable of improv... A new mathematical model to estimate the parameters of the probability-integral method for mining subsidence prediction is proposed.Based on least squares support vector machine(LS-SVM) theory, it is capable of improving the precision and reliability of mining subsidence prediction.Many of the geological and mining factors involved are related in a nonlinear way.The new model is based on statistical theory(SLT) and empirical risk minimization(ERM) principles.Typical data collected from observation stations were used for the learning and training samples.The calculated results from the LS-SVM model were compared with the prediction results of a back propagation neural network(BPNN) model.The results show that the parameters were more precisely predicted by the LS-SVM model than by the BPNN model.The LS-SVM model was faster in computation and had better generalized performance.It provides a highly effective method for calculating the predicting parameters of the probability-integral method. 展开更多
关键词 mining subsidence probability-integral method least squares support vector machine artificial neural networks
下载PDF
Forecasting model of residential load based on general regression neural network and PSO-Bayes least squares support vector machine 被引量:5
14
作者 何永秀 何海英 +1 位作者 王跃锦 罗涛 《Journal of Central South University》 SCIE EI CAS 2011年第4期1184-1192,共9页
Firstly,general regression neural network(GRNN) was used for variable selection of key influencing factors of residential load(RL) forecasting.Secondly,the key influencing factors chosen by GRNN were used as the input... Firstly,general regression neural network(GRNN) was used for variable selection of key influencing factors of residential load(RL) forecasting.Secondly,the key influencing factors chosen by GRNN were used as the input and output terminals of urban and rural RL for simulating and learning.In addition,the suitable parameters of final model were obtained through applying the evidence theory to combine the optimization results which were calculated with the PSO method and the Bayes theory.Then,the model of PSO-Bayes least squares support vector machine(PSO-Bayes-LS-SVM) was established.A case study was then provided for the learning and testing.The empirical analysis results show that the mean square errors of urban and rural RL forecast are 0.02% and 0.04%,respectively.At last,taking a specific province RL in China as an example,the forecast results of RL from 2011 to 2015 were obtained. 展开更多
关键词 residential load load forecasting general regression neural network (GRNN) evidence theory PSO-Bayes least squaressupport vector machine
下载PDF
Daily and Monthly Suspended Sediment Load Predictions Using Wavelet Based Artificial Intelligence Approaches 被引量:6
15
作者 Vahid NOURANI Gholamreza ANDALIB 《Journal of Mountain Science》 SCIE CSCD 2015年第1期85-100,共16页
In the current study, the efficiency of Wavelet-based Least Square Support Vector Machine (WLSSVM) model was examined for prediction of daily and monthly Suspended Sediment Load (SSL) of the Mississippi River. For... In the current study, the efficiency of Wavelet-based Least Square Support Vector Machine (WLSSVM) model was examined for prediction of daily and monthly Suspended Sediment Load (SSL) of the Mississippi River. For this purpose, in the first step, SSL was predicted via ad hoc LSSVM and Artificial Neural Network (ANN) models; then, streamflow and SSL data were decomposed into sub- signals via wavelet, and these decomposed sub-time series were imposed to LSSVM and ANN to simulate discharge-SSL relationship. Finally, the ability of WLSSVM was compared with other models in multi- step-ahead SSL predictions. The results showed that in daily SSL prediction, LSSVM has better outcomes with Determination Coefficient (DC)=o.92 than ad hoc ANN with DC=o.88. However unlike daily SSL, in monthly modeling, ANN has a bit accurate upshot. WLSSVM and wavelet-based ANN (WANN) models showed same consequences in daily and different in monthly SSL predictions, and adding wavelet led to more accuracy of LSSVM and ANN. Furthermore, conjunction of wavelet to LSSVM and ANN evaluated via multi-step-ahead SSL predictions and, e.g., DCLssVM=0.4 was increased to the DCwLsSVM=0.71 in 7- day ahead SSL prediction. In addition, WLSSVM outperformed WANN by increment of time horizon prediction. 展开更多
关键词 Suspended Sediment Load Least SquareSupport Vector Machine (LSSVM) WAVELET ArtificialNeural Network (ANN) Mississippi River
下载PDF
Joint application of feature extraction based on EMD-AR strategy and multi-class classifier based on LS-SVM in EMG motion classification 被引量:5
16
作者 YAN Zhi-guo WANG Zhi-zhong REN Xiao-mei 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2007年第8期1246-1255,共10页
This paper presents an effective and efficient combination of feature extraction and multi-class classifier for motion classification by analyzing the surface electromyografic(sEMG) signals. In contrast to the existin... This paper presents an effective and efficient combination of feature extraction and multi-class classifier for motion classification by analyzing the surface electromyografic(sEMG) signals. In contrast to the existing methods,considering the non-stationary and nonlinear characteristics of EMG signals,to get the more separable feature set,we introduce the empirical mode decomposition(EMD) to decompose the original EMG signals into several intrinsic mode functions(IMFs) and then compute the coefficients of autoregressive models of each IMF to form the feature set. Based on the least squares support vector machines(LS-SVMs) ,the multi-class classifier is designed and constructed to classify various motions. The results of contrastive experiments showed that the accuracy of motion recognition is improved with the described classification scheme. Furthermore,compared with other classifiers using different features,the excellent performance indicated the potential of the SVM techniques embedding the EMD-AR kernel in motion classification. 展开更多
关键词 Electromyografic signal Empirical mode decomposition (EMD) Auto-regression model Wavelet packet transform Least squares support vector machines (LS-SVM) Neural network
下载PDF
Slope displacement prediction based on morphological filtering 被引量:4
17
作者 李启月 许杰 +1 位作者 王卫华 范作鹏 《Journal of Central South University》 SCIE EI CAS 2013年第6期1724-1730,共7页
Combining mathematical morphology (MM),nonparametric and nonlinear model,a novel approach for predicting slope displacement was developed to improve the prediction accuracy.A parallel-composed morphological filter wit... Combining mathematical morphology (MM),nonparametric and nonlinear model,a novel approach for predicting slope displacement was developed to improve the prediction accuracy.A parallel-composed morphological filter with multiple structure elements was designed to process measured displacement time series with adaptive multi-scale decoupling.Whereafter,functional-coefficient auto regressive (FAR) models were established for the random subsequences.Meanwhile,the trend subsequence was processed by least squares support vector machine (LSSVM) algorithm.Finally,extrapolation results obtained were superposed to get the ultimate prediction result.Case study and comparative analysis demonstrate that the presented method can optimize training samples and show a good nonlinear predicting performance with low risk of choosing wrong algorithms.Mean absolute percentage error (MAPE) and root mean square error (RMSE) of the MM-FAR&LSSVM predicting results are as low as 1.670% and 0.172 mm,respectively,which means that the prediction accuracy are improved significantly. 展开更多
关键词 slope displacement prediction parallel-composed morphological filter functional-coefficient auto regressive predictionaccuracy
下载PDF
Combination forecast for urban rail transit passenger flow based on fuzzy information granulation and CPSO-LS-SVM 被引量:3
18
作者 TANG Min-an ZHANG Kai LIU Xing 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2018年第1期32-41,共10页
In order to obtain the trend of urban rail transit traffic flow and grasp the fluctuation range of passenger flow better,this paper proposes a combined forecasting model of passenger flow fluctuation range based on fu... In order to obtain the trend of urban rail transit traffic flow and grasp the fluctuation range of passenger flow better,this paper proposes a combined forecasting model of passenger flow fluctuation range based on fuzzy information granulation and least squares support vector machine(LS-SVM)optimized by chaos particle swarm optimization(CPSO).Due to the nonlinearity and fluctuation of the passenger flow,firstly,fuzzy information granulation is used to extract the valid data from the window according to the requirement.Secondly,CPSO that has strong global search ability is applied to optimize the parameters of the LS-SVM forecasting model.Finally,the combined model is used to forecast the fluctuation range of early peak passenger flow at Tiyu Xilu Station of Guangzhou Metro Line 3 in 2014,and the results are compared and analyzed with other models.Simulation results demonstrate that the combined forecasting model can effectively track the fluctuation of passenger flow,which provides an effective method for predicting the fluctuation range of short-term passenger flow in the future. 展开更多
关键词 urban rail transit passenger flow forecast least squares support vector machine(LS-SVM) fuzzy information granulation chaos particle swarm optimization(CPSO)
下载PDF
An optimal method for prediction and adjustment on gasholder level and self-provided power plant gas supply in steel works 被引量:2
19
作者 李红娟 王建军 +1 位作者 王华 孟华 《Journal of Central South University》 SCIE EI CAS 2014年第7期2779-2792,共14页
An optimal method for prediction and adjustment on byproduct gasholder level and self-provided power plant gas supply was proposed.This work raises the HP-ENN-LSSVM model based on the Hodrick-Prescott filter,Elman neu... An optimal method for prediction and adjustment on byproduct gasholder level and self-provided power plant gas supply was proposed.This work raises the HP-ENN-LSSVM model based on the Hodrick-Prescott filter,Elman neural network and least squares support vector machines.Then,according to the prediction,the optimal adjustment process came up by a novel reasoning method to sustain the gasholder within safety zone and the self-provided power plant boilers in economic operation,and prevent unfavorable byproduct gas emission and equipment trip as well.The experiments using the practical production data show that the proposed method achieves high accurate predictions and the optimal byproduct gas distribution,which provides a remarkable guidance for reasonable scheduling of byproduct gas. 展开更多
关键词 HP filter Elman neural network least square support vector machine gasholder level self-provided power plant
下载PDF
NonliNonlinear GPC with In-place Trained RLS-SVM Model for DOC Control in a Fed-batch Bioreactor 被引量:2
20
作者 冯絮影 于涛 王建林 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2012年第5期988-994,共7页
In this study, Saccharomyces cerevisiae (baker's yeast) was produced in a fed-batch bioreactor at the optimal dissolved oxygen concentration (DOC) and growth medium temperature. However, it is very difficult to co... In this study, Saccharomyces cerevisiae (baker's yeast) was produced in a fed-batch bioreactor at the optimal dissolved oxygen concentration (DOC) and growth medium temperature. However, it is very difficult to control the DOC using conventional controllers because of the poorly understood and constantly changing dynamics of the bioprocess. A generalized predictive controller (GPC) based on a nonlinear autoregressive integrated moving average exogenous (NARIMAX) model is presented to stabilize the DOC by manipulation of air flow rate. The NARIMAX model is built by an improved recursive least-squares support vector machine, which is trained by an in-place computation scheme and avoids the computation of the inverse of a large matrix and memory reallocation. The proposed nonlinear GPC algorithm requires little preliminary knowledge of the fermentation process, and directly obtains the nonlinear model in matrix form by using iterative multiple modeling instead of linearization at each sampling period. By application of an on-line bioreactor control, experimental results demonstrate the robustness, effectiveness and advantages of the new controller. 展开更多
关键词 nonlinear generalized predictive controller recursive least squares support vector machine in-place computation fed-batch bioreactor dissolved oxygen concentration
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部