部分变量误差模型(partial EIV model)的加权整体最小二乘(weighted total least-squares,WTLS)估计不具备抵御粗差的能力。鉴于粗差可能同时出现在观测值和系数矩阵中,本文在提出部分变量误差模型WTLS估计的两步迭代解法的基础上,运用...部分变量误差模型(partial EIV model)的加权整体最小二乘(weighted total least-squares,WTLS)估计不具备抵御粗差的能力。鉴于粗差可能同时出现在观测值和系数矩阵中,本文在提出部分变量误差模型WTLS估计的两步迭代解法的基础上,运用抗差M估计的等价权方法,发展了一种整体抗差最小二乘(TRLS)估计方法,并采用一致最大功效统计量确定降权因子。针对WTLS估计两步迭代解法的特点,设计了两个不同的降权方案:第1个方案是在估计系数矩阵元素时,不对观测值降权,仅对系数矩阵降权;第2个方案是在估计系数矩阵元素时,既对系数矩阵降权,同时也对观测值降权。通过对模拟2D仿射变换和线性拟合实例进行计算和分析,结果表明第1方案优于第2方案,并且优于基于残差和验后单位权方差的抗差估计和现有的变量误差模型抗差估计。展开更多
在三维激光扫描仪使用过程中,为了减小点云拼接时的误差问题,本文利用同方差多元变量的EIV(Errors In Variables)模型及总体最小二乘的方法解决三维空间点的相似变换,较传统的迭代算法计算空间坐标转换的方法,具有非迭代性、可靠性和计...在三维激光扫描仪使用过程中,为了减小点云拼接时的误差问题,本文利用同方差多元变量的EIV(Errors In Variables)模型及总体最小二乘的方法解决三维空间点的相似变换,较传统的迭代算法计算空间坐标转换的方法,具有非迭代性、可靠性和计算过程中的简便性。最后,利用实际工程案例对非迭代算法的有效性进行了验证。展开更多
文摘部分变量误差模型(partial EIV model)的加权整体最小二乘(weighted total least-squares,WTLS)估计不具备抵御粗差的能力。鉴于粗差可能同时出现在观测值和系数矩阵中,本文在提出部分变量误差模型WTLS估计的两步迭代解法的基础上,运用抗差M估计的等价权方法,发展了一种整体抗差最小二乘(TRLS)估计方法,并采用一致最大功效统计量确定降权因子。针对WTLS估计两步迭代解法的特点,设计了两个不同的降权方案:第1个方案是在估计系数矩阵元素时,不对观测值降权,仅对系数矩阵降权;第2个方案是在估计系数矩阵元素时,既对系数矩阵降权,同时也对观测值降权。通过对模拟2D仿射变换和线性拟合实例进行计算和分析,结果表明第1方案优于第2方案,并且优于基于残差和验后单位权方差的抗差估计和现有的变量误差模型抗差估计。
文摘在三维激光扫描仪使用过程中,为了减小点云拼接时的误差问题,本文利用同方差多元变量的EIV(Errors In Variables)模型及总体最小二乘的方法解决三维空间点的相似变换,较传统的迭代算法计算空间坐标转换的方法,具有非迭代性、可靠性和计算过程中的简便性。最后,利用实际工程案例对非迭代算法的有效性进行了验证。