Least squares migration can eliminate the artifacts introduced by the direct imaging of irregular seismic data but is computationally costly and of slow convergence. In order to suppress the migration noise, we propos...Least squares migration can eliminate the artifacts introduced by the direct imaging of irregular seismic data but is computationally costly and of slow convergence. In order to suppress the migration noise, we propose the preconditioned prestack plane-wave least squares reverse time migration (PLSRTM) method with singular spectrum constraint. Singular spectrum analysis (SSA) is used in the preconditioning of the take-off angle-domain common-image gathers (TADCIGs). In addition, we adopt randomized singular value decomposition (RSVD) to calculate the singular values. RSVD reduces the computational cost of SSA by replacing the singular value decomposition (SVD) of one large matrix with the SVD of two small matrices. We incorporate a regularization term into the preconditioned PLSRTM method that penalizes misfits between the migration images from the plane waves with adjacent angles to reduce the migration noise because the stacking of the migration results cannot effectively suppress the migration noise when the migration velocity contains errors. The regularization imposes smoothness constraints on the TADCIGs that favor differential semblance optimization constraints. Numerical analysis of synthetic data using the Marmousi model suggests that the proposed method can efficiently suppress the artifacts introduced by plane-wave gathers or irregular seismic data and improve the imaging quality of PLSRTM. Furthermore, it produces better images with less noise and more continuous structures even for inaccurate migration velocities.展开更多
Geologic surface approximation is profoundly affected by the presence, density and location of scattered geologic input data. Many studies have recognized the importance of utilizing varied sources of information when...Geologic surface approximation is profoundly affected by the presence, density and location of scattered geologic input data. Many studies have recognized the importance of utilizing varied sources of information when reconstructing a surface. This paper presents an improved geologic surface approximation method using a multiquadric function and borehole data. Additional information, i.e., inequality elevation and dip-strikes data extracted from outcrops or mining faces, is introduced in the form of physical constraints that control local changes in the estimated surface. Commonly accepted hypothesis states that geologic surfaces can be approximated to any desired degree of exactness by the summation of regular, mathematically defined, surfaces: in particular displaced quadric forms. The coefficients of the multiquadric functions are traditionally found by a least squares method. The addition of physical constraints in this work makes such an approach into a non-deterministic polynomial time problem. Hence we propose an objective function that represents the quality of the estimated surface and that includes the additional constraints by incorporation of a penalty function. Maximizing the smoothness of the estimated surface and its fitness to the additional constraints then allows the coefficients of the multiquadric function to be obtained by iterative methods. This method was implemented and demonstrated using data collected from the 81'st coal mining area of the Huaibei Coal Group.展开更多
This paper investigates the scaled prediction variances in the errors-in-variables model and compares the performance with those in classic model of response surface designs for three factors.The ordinary least square...This paper investigates the scaled prediction variances in the errors-in-variables model and compares the performance with those in classic model of response surface designs for three factors.The ordinary least squares estimators of regression coefficients are derived from a second-order response surface model with errors in variables.Three performance criteria are proposed.The first is the difference between the empirical mean of maximum value of scaled prediction variance with errors and the maximum value of scaled prediction variance without errors.The second is the mean squared deviation from the mean of simulated maximum scaled prediction variance with errors.The last performance measure is the mean squared scaled prediction variance change with and without errors.In the simulations,1 000 random samples were performed following three factors with 20 experimental runs for central composite designs and 15 for Box-Behnken design.The independent variables are coded variables in these designs.Comparative results show that for the low level errors in variables,central composite face-centered design is optimal;otherwise,Box-Behnken design has a relatively better performance.展开更多
The development of Differential Synthetic Aperture Radar Interferometry (D-InSAR), in terms of its evolution from classic to advanced forms, such as Least-Squares approach, Permanent Scatterer Interferometry, Small ...The development of Differential Synthetic Aperture Radar Interferometry (D-InSAR), in terms of its evolution from classic to advanced forms, such as Least-Squares approach, Permanent Scatterer Interferometry, Small Baseline Subset, and Coherent Pixel Technique, is reviewed, describing concisely the main principles of each method and highlighting the difference and relationship between them. Applications of InSAR technology in China were then introduced, together with the obstacles to overcome and feasible strategies, such as integrating MERIS/MODIS data to compensate for the atmospheric effect and GPS, and multi-platform SAR data to make InSAR technique practical and operational under various conditions. The latest devel- opments were then analyzed along with high-quality SAR data, available thanks to the newly launched high-tech satellites, TerraSAR-X, and Cosmo Sky-med, and conclusions were drawn about the main limitations of the technique.展开更多
Heavy floods occur frequently in the Senegal River Basin, causing catastrophic flooding downstream the river rating station of Bakel. Anticipating the occurrence of such phenomena is the only way to reduce the resulti...Heavy floods occur frequently in the Senegal River Basin, causing catastrophic flooding downstream the river rating station of Bakel. Anticipating the occurrence of such phenomena is the only way to reduce the resulting damages. Flood forecasting is a necessity. Flood forecasting plays also an important role in the implementation of flood management scenarios and in the protection of hydro electric structures. Many methods are applied. The most complete are based on the conservation laws of physics governing the free surface flow. These methods need a complete description of the geometry of the river and their implementation requires also huge investments. In practice the river basin can be considered as a system of inputs-outputs related by a transfer function. In this paper the authors first used a multiple linear regression model with constant parameters estimated by the ordinary least square method to simulate the propagation of the floods in the upstream part of the Senegal river basin. The authors then apply statistical and graphical criteria of goodness-of-fit to test the suitability of this model. Three procedures of parameters updating have then been added to this linear model: the Kalman filter method, the recursive least square method, and the stochastic gradient method The criteria of goodness-of-fit used above have shown that the stochastic gradient method, although more rudimentary, represents better the flood propagation in the head basin of the Senegal river upstream Bakel. This result is particularly interesting because data influenced by Manantali Dam are used.展开更多
基金supported by the National Science and Technology Major Project(No.2016ZX05014-001-008)the National Key Basic Research Program of China(No.2014CB239006)+2 种基金the National Natural Science Foundation of China(Nos.41104069 and 41274124)the Open foundation of SINOPEC Key Laboratory of Geophysics(No.33550006-15-FW2099-0033)the Fundamental Research Funds for Central Universities(No.16CX06046A)
文摘Least squares migration can eliminate the artifacts introduced by the direct imaging of irregular seismic data but is computationally costly and of slow convergence. In order to suppress the migration noise, we propose the preconditioned prestack plane-wave least squares reverse time migration (PLSRTM) method with singular spectrum constraint. Singular spectrum analysis (SSA) is used in the preconditioning of the take-off angle-domain common-image gathers (TADCIGs). In addition, we adopt randomized singular value decomposition (RSVD) to calculate the singular values. RSVD reduces the computational cost of SSA by replacing the singular value decomposition (SVD) of one large matrix with the SVD of two small matrices. We incorporate a regularization term into the preconditioned PLSRTM method that penalizes misfits between the migration images from the plane waves with adjacent angles to reduce the migration noise because the stacking of the migration results cannot effectively suppress the migration noise when the migration velocity contains errors. The regularization imposes smoothness constraints on the TADCIGs that favor differential semblance optimization constraints. Numerical analysis of synthetic data using the Marmousi model suggests that the proposed method can efficiently suppress the artifacts introduced by plane-wave gathers or irregular seismic data and improve the imaging quality of PLSRTM. Furthermore, it produces better images with less noise and more continuous structures even for inaccurate migration velocities.
基金provided by the National Science and Technology Major Project of China (Nos.2009ZX05039-004 and 2009ZX 05039-002)the National Natural Science Foundation of China (Nos.40771167 and 70621001)
文摘Geologic surface approximation is profoundly affected by the presence, density and location of scattered geologic input data. Many studies have recognized the importance of utilizing varied sources of information when reconstructing a surface. This paper presents an improved geologic surface approximation method using a multiquadric function and borehole data. Additional information, i.e., inequality elevation and dip-strikes data extracted from outcrops or mining faces, is introduced in the form of physical constraints that control local changes in the estimated surface. Commonly accepted hypothesis states that geologic surfaces can be approximated to any desired degree of exactness by the summation of regular, mathematically defined, surfaces: in particular displaced quadric forms. The coefficients of the multiquadric functions are traditionally found by a least squares method. The addition of physical constraints in this work makes such an approach into a non-deterministic polynomial time problem. Hence we propose an objective function that represents the quality of the estimated surface and that includes the additional constraints by incorporation of a penalty function. Maximizing the smoothness of the estimated surface and its fitness to the additional constraints then allows the coefficients of the multiquadric function to be obtained by iterative methods. This method was implemented and demonstrated using data collected from the 81'st coal mining area of the Huaibei Coal Group.
基金Supported by National Natural Science Foundation of China (No.70871087 and No.70931004)
文摘This paper investigates the scaled prediction variances in the errors-in-variables model and compares the performance with those in classic model of response surface designs for three factors.The ordinary least squares estimators of regression coefficients are derived from a second-order response surface model with errors in variables.Three performance criteria are proposed.The first is the difference between the empirical mean of maximum value of scaled prediction variance with errors and the maximum value of scaled prediction variance without errors.The second is the mean squared deviation from the mean of simulated maximum scaled prediction variance with errors.The last performance measure is the mean squared scaled prediction variance change with and without errors.In the simulations,1 000 random samples were performed following three factors with 20 experimental runs for central composite designs and 15 for Box-Behnken design.The independent variables are coded variables in these designs.Comparative results show that for the low level errors in variables,central composite face-centered design is optimal;otherwise,Box-Behnken design has a relatively better performance.
基金Support by the Ministry of Education Innovation Team (IRT0865) the National Natural Science Foundation of China (51004100) the Project for Ph.D Program (20060290511)
文摘The development of Differential Synthetic Aperture Radar Interferometry (D-InSAR), in terms of its evolution from classic to advanced forms, such as Least-Squares approach, Permanent Scatterer Interferometry, Small Baseline Subset, and Coherent Pixel Technique, is reviewed, describing concisely the main principles of each method and highlighting the difference and relationship between them. Applications of InSAR technology in China were then introduced, together with the obstacles to overcome and feasible strategies, such as integrating MERIS/MODIS data to compensate for the atmospheric effect and GPS, and multi-platform SAR data to make InSAR technique practical and operational under various conditions. The latest devel- opments were then analyzed along with high-quality SAR data, available thanks to the newly launched high-tech satellites, TerraSAR-X, and Cosmo Sky-med, and conclusions were drawn about the main limitations of the technique.
文摘Heavy floods occur frequently in the Senegal River Basin, causing catastrophic flooding downstream the river rating station of Bakel. Anticipating the occurrence of such phenomena is the only way to reduce the resulting damages. Flood forecasting is a necessity. Flood forecasting plays also an important role in the implementation of flood management scenarios and in the protection of hydro electric structures. Many methods are applied. The most complete are based on the conservation laws of physics governing the free surface flow. These methods need a complete description of the geometry of the river and their implementation requires also huge investments. In practice the river basin can be considered as a system of inputs-outputs related by a transfer function. In this paper the authors first used a multiple linear regression model with constant parameters estimated by the ordinary least square method to simulate the propagation of the floods in the upstream part of the Senegal river basin. The authors then apply statistical and graphical criteria of goodness-of-fit to test the suitability of this model. Three procedures of parameters updating have then been added to this linear model: the Kalman filter method, the recursive least square method, and the stochastic gradient method The criteria of goodness-of-fit used above have shown that the stochastic gradient method, although more rudimentary, represents better the flood propagation in the head basin of the Senegal river upstream Bakel. This result is particularly interesting because data influenced by Manantali Dam are used.