期刊文献+
共找到77篇文章
< 1 2 4 >
每页显示 20 50 100
基于最小二乘-支持向量机的制粉过程煤粉细度软测量模型 被引量:10
1
作者 张立岩 岳恒 +2 位作者 张君 丁进良 柴天佑 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2007年第z2期1932-1935,共4页
煤粉细度是煤粉磨制过程控制的一个关键工艺指标,保证煤粉细度在一定范围内对于优化锅炉或回转窑的燃烧效率有着重要意义。由于煤粉细度无法在线测量,而离线化验既不能保证实时性,又容易造成煤粉泄漏污染环境,因此难以实现对煤粉细度的... 煤粉细度是煤粉磨制过程控制的一个关键工艺指标,保证煤粉细度在一定范围内对于优化锅炉或回转窑的燃烧效率有着重要意义。由于煤粉细度无法在线测量,而离线化验既不能保证实时性,又容易造成煤粉泄漏污染环境,因此难以实现对煤粉细度的有效控制。该文通过对制粉过程中影响煤粉细度的因素进行分析,采用基于最小二乘-支持向量机的方法建立煤粉细度的软测量模型。通过模型误差最小的原则,确定了模型相关参数,解决了样本数量较少,常规软测量方法难以实现的问题。通过现场采集的样本数据进行的实验研究表明了该模型的有效性。 展开更多
关键词 软测量 煤粉细度 最小二乘-支持向量机
原文传递
迭代再权共轭梯度q范数正则化线性最小二乘–支持向量机分类算法 被引量:1
2
作者 刘建伟 黎海恩 +2 位作者 刘媛 付捷 罗雄麟 《控制理论与应用》 EI CAS CSCD 北大核心 2014年第3期334-342,共9页
L2范数罚最小二乘–支持向量机(least square support vector machine algorithm,LS–SVM)分类器是得到广泛研究和使用的机器学习算法,其算法中正则化阶次是事先给定的,预设q=2.本文提出q范数正则化LS–SVM分类器算法,0<q<∞,把q... L2范数罚最小二乘–支持向量机(least square support vector machine algorithm,LS–SVM)分类器是得到广泛研究和使用的机器学习算法,其算法中正则化阶次是事先给定的,预设q=2.本文提出q范数正则化LS–SVM分类器算法,0<q<∞,把q取值扩大到有理数范围.利用网格法改变正则化权衡参数c和正则化阶次q的值,在所选的c和q值上,使用迭代再权方法求解分类器目标函数,找出最小分类预测误差值,使预测误差和特征选择个数两个性能指标得到提高.通过对不同领域的实际数据进行实验,可以看到提出的分类算法分类预测更加准确同时可以实现特征选择,性能优于L2范数罚LS–SVM. 展开更多
关键词 q范数正则化 最小二乘-支持向量机(LS-SVM) 迭代再权共轭梯度法
下载PDF
基于无信息变量消除法和连续投影算法的可见-近红外光谱技术白虾种分类方法研究 被引量:49
3
作者 吴迪 吴洪喜 +2 位作者 蔡景波 黄振华 何勇 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2009年第6期423-427,共5页
应用无信息变量消除法结合连续投影算法对可见-近红外光谱区进行有效波长的选择,选择后的波长作为输入变量建立最小二乘-支持向量机模型,对白虾属中三种典型种,脊尾白虾、秀丽白虾和东方白虾进行鉴别分类.实验采用Kennard-Stone算法选取... 应用无信息变量消除法结合连续投影算法对可见-近红外光谱区进行有效波长的选择,选择后的波长作为输入变量建立最小二乘-支持向量机模型,对白虾属中三种典型种,脊尾白虾、秀丽白虾和东方白虾进行鉴别分类.实验采用Kennard-Stone算法选取150个样本作为建模集,50个样本作为预测集,通过UVE-SPA优选了数值分别为392、431、517、551、595、627、676、734、760、861、943和1018 nm的12个波长为LS-SVM的输入变量,建立了白虾种分类模型.该模型对50个预测集样本检验的准确率达到了92.00%.结果表明,采用可见-近红外光谱对白虾种进行鉴别是可行的,UVE-SPA能够有效地进行波长选择,使LS-SVM模型获得最优的分类结果. 展开更多
关键词 可见-近红外光谱 无信息变量消除 连续投影算法 最小二乘-支持向量机
下载PDF
基于近红外光谱技术的油菜叶片丙二醛含量快速检测方法研究 被引量:20
4
作者 孔汶汶 刘飞 +2 位作者 邹强 方慧 何勇 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2011年第4期988-991,共4页
应用近红外光谱技术实现了油菜叶片中丙二醛(MDA)含量的快速无损检测。对90个油菜叶片样本进行光谱扫描,用60个样本建模,30个样本验证。经过平滑、变量标准化、一阶及二阶求导、去趋势等预处理后,建立了MDA预测的偏最小二乘法(PLS)模型... 应用近红外光谱技术实现了油菜叶片中丙二醛(MDA)含量的快速无损检测。对90个油菜叶片样本进行光谱扫描,用60个样本建模,30个样本验证。经过平滑、变量标准化、一阶及二阶求导、去趋势等预处理后,建立了MDA预测的偏最小二乘法(PLS)模型。将PLS提取的有效特征变量(LV)和连续投影算法(SPA)提取的有效波长作为最小二乘-支持向量机(LS-SVM)的输入变量,分别建立了LV-LS-SVM和SPA-LS-SVM模型。以预测集的预测相关系数(r),预测标准偏差(RMSEP)作为模型评价指标。结果表明,油菜叶片中MDA含量预测的最优模型为LV-LS-SVM模型,LV-LS-SVM在去趋势处理后的预测效果为r=0.999 9,RMSEP=0.530 2;在二阶求导处理后的预测效果为r=0.999 9,RMSEP=0.395 7。说明应用光谱技术检测油菜叶片中MDA的含量是可行的,并能获得满意的预测精度,为油菜大田生长状况的动态连续监测提供了新的方法。 展开更多
关键词 近红外光谱 油菜 最小二乘 最小二乘-支持向量机
下载PDF
CPSO-LSSVM在自回归钟差预报中的应用 被引量:6
5
作者 刘强 孙际哲 +2 位作者 陈西宏 刘继业 张群 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2014年第3期807-811,共5页
建立了基于自回归算法的钟差预报模型,利用具有较强非线性运算能力和容错能力的最小二乘-支持向量机算法来求解自回归参数,同时利用具有快速寻优特点的粒子群算法来优化最小二乘-支持向量机参数。为了克服粒子群算法容易陷入局部极值而... 建立了基于自回归算法的钟差预报模型,利用具有较强非线性运算能力和容错能力的最小二乘-支持向量机算法来求解自回归参数,同时利用具有快速寻优特点的粒子群算法来优化最小二乘-支持向量机参数。为了克服粒子群算法容易陷入局部极值而形成早熟的缺点,提出了分别在粒子初始化位置和陷入局部极值的位置上进行混沌处理,提高了粒子搜索的遍历性和寻优能力,从整体上优化了算法。最后通过星载钟差数据对该算法进行了验证,结果表明:本文算法能够实现亚纳秒量级的预报精度并提升卫星授时导航性能。 展开更多
关键词 计算机应用 混沌粒子群 最小二乘-支持向量机 钟差预报
下载PDF
PSO-LSSVM的核电站破口故障程度评估方法 被引量:4
6
作者 王志超 夏虹 +1 位作者 彭彬森 朱少民 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2021年第12期1748-1753,共6页
为了保证从核电站大量数据中有效地挖掘信息以及故障下运行状态的智能表征,本文提出一种基于粒子群优化和最小二乘支持向量机的系统级故障程度评估方法,用于完善故障诊断系统的功能。针对最小二乘支持向量机算法的超参数选取对于回归精... 为了保证从核电站大量数据中有效地挖掘信息以及故障下运行状态的智能表征,本文提出一种基于粒子群优化和最小二乘支持向量机的系统级故障程度评估方法,用于完善故障诊断系统的功能。针对最小二乘支持向量机算法的超参数选取对于回归精度影响较大问题,应用基于粒子群优化算法借助智能搜索策略来优化模型的超参数。基于最优超参数的回归模型能够提取系统级参数间的约束关系,以进行实时故障程度的评估。性能测试表明:采用提出的方法能够有效评估核电站系统级故障的程度,相较于粒子群优化-支持向量机以及最小二乘支持向量机算法具有更高的回归精度,且抗噪性能良好,保证了故障诊断系统的精度及可靠性。 展开更多
关键词 核动力装置 故障程度评估 最小二乘-支持向量机 粒子群优化算法 运行支持 回归模型 优化算法 数据驱动
下载PDF
基于随机蛙跳和支持向量机的冬小麦叶面积指数估算 被引量:12
7
作者 孙晶京 杨武德 +1 位作者 冯美臣 肖璐洁 《山西农业大学学报(自然科学版)》 CAS 北大核心 2020年第5期120-128,共9页
[目的]作物叶面积指数(LAI)与其长势密切相关,通过研究小麦冠层光谱的不同预处理方法、波段选择方法和模型构建方法的不同组合,找出适用于小麦LAI估算的最佳预测模型,为快速准确监测冬小麦LAI提供参考。[方法]本研究以冬小麦为研究对象... [目的]作物叶面积指数(LAI)与其长势密切相关,通过研究小麦冠层光谱的不同预处理方法、波段选择方法和模型构建方法的不同组合,找出适用于小麦LAI估算的最佳预测模型,为快速准确监测冬小麦LAI提供参考。[方法]本研究以冬小麦为研究对象,测定其在不同生育时期的LAI与冠层光谱反射率,研究了原始光谱、一阶和二阶导数光谱与LAI之间的相关系数并采用随机蛙跳算法对其进行特征波段的提取,最后基于选取的特征波段,使用偏最小二乘回归(PLSR)和最小二乘支持向量回归(LS-SVR)分别构建LAI预测模型。[结果]结果表明,二阶导数光谱不仅可以改善红边区域波段与LAI之间的相关系数,在725 nm处其相关系数达到0.662,而且提高了特征波段的选择概率,在732 nm处,其选择概率达到0.688。相比采用相关系数和竞争自适应重加权采样(CARS)所建的模型,用随机蛙跳选择的特征波段构建的模型预测精度更高,校正集决定系数达到0.956,验证集决定系数达到0.902,校正集均方根误差降低到0.367,验证集均方根误差降低到0.601。此外,在LAI的预测模型中,LS-SVR的性能优于PLSR。[结论]采用二阶导数预处理结合随机蛙跳特征波长选择算法并使用LS-SVR构建的LAI预测模型性能最佳,可为快速检测LAI提供一种可行的解决方案。 展开更多
关键词 可见光/近红外光谱 叶面积指数(LAI) 光谱变换 随机蛙跳 最小二乘-支持向量回归(LS-SVR)
下载PDF
基于混合PLS-SVM方法的双酚A软测量建模 被引量:4
8
作者 郭景华 杨慧中 《江南大学学报(自然科学版)》 CAS 2009年第2期127-130,共4页
在对复杂生产过程的软测量建模中,为了有效地处理其生产过程的非线性、多输入和数据相关性等复杂特性,提高模型的推广能力和精度,提出了一种兼备偏最小二乘和支持向量机优点的混合偏最小二乘-支持向量机方法。在对双酚A结晶塔工艺分析... 在对复杂生产过程的软测量建模中,为了有效地处理其生产过程的非线性、多输入和数据相关性等复杂特性,提高模型的推广能力和精度,提出了一种兼备偏最小二乘和支持向量机优点的混合偏最小二乘-支持向量机方法。在对双酚A结晶塔工艺分析的基础上,将该方法应用于双酚A结晶塔软测量建模。应用结果表明,该方法在模型精度、推广能力等方面都明显优于一些传统软测量建模方法。 展开更多
关键词 支持向量机 最小二乘 软测量 双酚A 混合偏最小二乘-支持向量机
下载PDF
Tribological properties and wear prediction model of TiC particles reinforced Ni-base alloy composite coatings 被引量:4
9
作者 谭业发 何龙 +2 位作者 王小龙 洪翔 王伟刚 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第8期2566-2573,共8页
TiC particles reinforced Ni-based alloy composite coatings were prepared on 7005 aluminum alloy by plasma spray. The effects of load, speed and temperature on the tribological behavior and mechanisms of the composite ... TiC particles reinforced Ni-based alloy composite coatings were prepared on 7005 aluminum alloy by plasma spray. The effects of load, speed and temperature on the tribological behavior and mechanisms of the composite coatings under dry friction were researched. The wear prediction model of the composite coatings was established based on the least square support vector machine (LS-SVM). The results show that the composite coatings exhibit smaller friction coefficients and wear losses than the Ni-based alloy coatings under different friction conditions. The predicting time of the LS-SVM model is only 12.93%of that of the BP-ANN model, and the predicting accuracies on friction coefficients and wear losses of the former are increased by 58.74%and 41.87%compared with the latter. The LS-SVM model can effectively predict the tribological behavior of the TiCP/Ni-base alloy composite coatings under dry friction. 展开更多
关键词 TiC particles Ni-based alloy composite coating least square support vector machine(LS-SVM) wear prediction model
下载PDF
Grain Yield Prediction for Irrigation District Based on LS-SVM 被引量:5
10
作者 宰松梅 贾艳辉 +1 位作者 温季 郭冬冬 《Agricultural Science & Technology》 CAS 2009年第6期1-3,6,共4页
Commonly used grain yield forecasting models were briefly reviewed, and a yield prediction model of irrigation district was established based on least squares support vector machines (LS-SVM). The grain yield in irr... Commonly used grain yield forecasting models were briefly reviewed, and a yield prediction model of irrigation district was established based on least squares support vector machines (LS-SVM). The grain yield in irrigation district was analog calculated. And the test samples were used to compare with gray prediction, and neural network model. The maximum predicted error of least squares SVM was 7.12%, with an average error of 4.81%. The results showed that LS-SVM model has high prediction accuracy and strong generalization ability. So it could be used as a new method for irrigation district yield prediction 展开更多
关键词 YIELD PREDICTION LS-SVM MODEL
下载PDF
Rapid vision-based system for secondary copper content estimation 被引量:2
11
作者 张宏伟 葛志强 +2 位作者 袁小锋 宋执环 叶凌箭 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第8期2665-2676,共12页
A vision-based color analysis system was developed for rapid estimation of copper content in the secondary copper smelting process. Firstly, cross section images of secondary copper samples were captured by the design... A vision-based color analysis system was developed for rapid estimation of copper content in the secondary copper smelting process. Firstly, cross section images of secondary copper samples were captured by the designed vision system. After the preprocessing and segmenting procedures, the images were selected according to their grayscale standard deviations of pixels and percentages of edge pixels in the luminance component. The selected images were then used to extract the information of the improved color vector angles, from which the copper content estimation model was developed based on the least squares support vector regression (LSSVR) method. For comparison, three additional LSSVR models, namely, only with sample selection, only with improved color vector angle, without sample selection or improved color vector angle, were developed. In addition, two exponential models, namely, with sample selection, without sample selection, were developed. Experimental results indicate that the proposed method is more effective for improving the copper content estimation accuracy, particularly when the sample size is small. 展开更多
关键词 secondary copper copper content estimation sample selection color vector angle least squares support vector regression
下载PDF
NOVEL WEIGHTED LEAST SQUARES SUPPORT VECTOR REGRESSION FOR THRUST ESTIMATION ON PERFORMANCE DETERIORATION OF AERO-ENGINE 被引量:2
12
作者 苏伟生 赵永平 孙健国 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2012年第1期25-32,共8页
A thrust estimator with high precision and excellent real-time performance is needed to mitigate perfor- mance deterioration for future aero-engines. A weight least squares support vector regression is proposed using ... A thrust estimator with high precision and excellent real-time performance is needed to mitigate perfor- mance deterioration for future aero-engines. A weight least squares support vector regression is proposed using a novel weighting strategy. Then a thrust estimator based on the proposed regression is designed for the perfor- mance deterioration. Compared with the existing weighting strategy, the novel one not only satisfies the require- ment of precision but also enhances the real-time performance. Finally, numerical experiments demonstrate the effectiveness and feasibility of the proposed weighted least squares support vector regression for thrust estimator. Key words : intelligent engine control; least squares ; support vector machine ; performance deterioration 展开更多
关键词 intelligent engine control least squares support vector machine performance deterioration
下载PDF
Semi-supervised least squares support vector machine algorithm:application to offshore oil reservoir 被引量:1
13
作者 罗伟平 李洪奇 石宁 《Applied Geophysics》 SCIE CSCD 2016年第2期406-415,421,共11页
At the early stages of deep-water oil exploration and development, fewer and further apart wells are drilled than in onshore oilfields. Supervised least squares support vector machine algorithms are used to predict th... At the early stages of deep-water oil exploration and development, fewer and further apart wells are drilled than in onshore oilfields. Supervised least squares support vector machine algorithms are used to predict the reservoir parameters but the prediction accuracy is low. We combined the least squares support vector machine (LSSVM) algorithm with semi-supervised learning and established a semi-supervised regression model, which we call the semi-supervised least squares support vector machine (SLSSVM) model. The iterative matrix inversion is also introduced to improve the training ability and training time of the model. We use the UCI data to test the generalization of a semi-supervised and a supervised LSSVM models. The test results suggest that the generalization performance of the LSSVM model greatly improves and with decreasing training samples the generalization performance is better. Moreover, for small-sample models, the SLSSVM method has higher precision than the semi-supervised K-nearest neighbor (SKNN) method. The new semi- supervised LSSVM algorithm was used to predict the distribution of porosity and sandstone in the Jingzhou study area. 展开更多
关键词 Semi-supervised learning least squares support vector machine seismic attributes reservoir prediction
下载PDF
基于LS-SVM的航空故障电弧诊断 被引量:4
14
作者 李岚松 周越 +2 位作者 熊翔 于广辉 王永兴 《电器与能效管理技术》 2018年第10期45-49,59,共6页
将最小二乘-支持向量机算法(LS-SVM)应用于航空故障电弧的识别中,构建了LS-SVM分类器。从提取的故障电弧信息得到特征向量,作为LS-SVM的输入向量,对LS-SVM分类器进行训练和测试,并对线性负载、非线性负载和未知负载的航空故障电弧进行... 将最小二乘-支持向量机算法(LS-SVM)应用于航空故障电弧的识别中,构建了LS-SVM分类器。从提取的故障电弧信息得到特征向量,作为LS-SVM的输入向量,对LS-SVM分类器进行训练和测试,并对线性负载、非线性负载和未知负载的航空故障电弧进行了识别。结果表明,所提算法能有效识别是否发生故障电弧,但是对于电弧故障具体类型的判断还有待于改进提高。 展开更多
关键词 最小二乘-支持向量机 航空故障电弧 故障电弧诊断 特征向量
下载PDF
基于潜在特征选择性集成建模的二噁英排放浓度软测量 被引量:5
15
作者 汤健 乔俊飞 郭子豪 《自动化学报》 EI CAS CSCD 北大核心 2022年第1期223-238,共16页
二噁英(Dioxin,DXN)是导致城市固废焚烧(Municipal solid waste incineration, MSWI)建厂存在"邻避现象"的主要原因之一.工业现场多采用离线化验手段检测DXN浓度,难以满足污染物减排控制的需求.针对上述问题,本文提出了基于... 二噁英(Dioxin,DXN)是导致城市固废焚烧(Municipal solid waste incineration, MSWI)建厂存在"邻避现象"的主要原因之一.工业现场多采用离线化验手段检测DXN浓度,难以满足污染物减排控制的需求.针对上述问题,本文提出了基于潜在特征选择性集成(Selective ensemble, SEN)建模的DXN排放浓度软测量方法.首先,采用主元分析(Principal component analysis, PCA)分别提取依据工艺阶段子系统及全流程系统过程变量的潜在特征,并依据预设贡献率阈值进行特征初选;接着,采用互信息(Mutual information, MI)度量初选特征与DXN间的相关性,并自适应确定再选的上下限及阈值;最后,采用具有超参数自适应选择机制的最小二乘-支持向量机(Least squares—support vector machine,LS-SVM)算法建立多源特征的候选子模型,基于分支定界(Branch and bound, BB)优化和预测误差信息熵加权算法进行集成子模型的优化选择和加权组合,进而得到软测量模型.基于某MSWI焚烧厂DXN检测数据仿真验证了所提方法的有效性. 展开更多
关键词 城市固废焚烧 噁英 多源潜在特征 最小二乘-支持向量机 选择性集成建模
下载PDF
基于小波包和LS-SVM的变压器励磁涌流与短路电流识别方法 被引量:3
16
作者 祝磊 《陕西电力》 2009年第11期55-58,共4页
基于小波包分解和最小二乘-支持向量机(LS-SVM),提出了变压器短路电流和励磁涌流识别的新方法。通过将电流信号进行小波包分解,计算出分解后各频段信号的能量,组成能量特征向量,并考虑作为最小二乘一支持向量机分类器的输入参数,来实现... 基于小波包分解和最小二乘-支持向量机(LS-SVM),提出了变压器短路电流和励磁涌流识别的新方法。通过将电流信号进行小波包分解,计算出分解后各频段信号的能量,组成能量特征向量,并考虑作为最小二乘一支持向量机分类器的输入参数,来实现短路电流和励磁涌流的识别。仿真结果表明,该方法识别准确率高,受噪声的影响小。 展开更多
关键词 变压器 励磁涌流 短路电流 小波包 最小二乘-支持向量机(LS-SVM)
下载PDF
On-line least squares support vector machine algorithm in gas prediction 被引量:21
17
作者 ZHAO Xiao-hu WANG Gang ZHAO Ke-ke TAN De-jian 《Mining Science and Technology》 EI CAS 2009年第2期194-198,共5页
Traditional coal mine safety prediction methods are off-line and do not have dynamic prediction functions.The Support Vector Machine(SVM) is a new machine learning algorithm that has excellent properties.The least squ... Traditional coal mine safety prediction methods are off-line and do not have dynamic prediction functions.The Support Vector Machine(SVM) is a new machine learning algorithm that has excellent properties.The least squares support vector machine(LS-SVM) algorithm is an improved algorithm of SVM.But the common LS-SVM algorithm,used directly in safety predictions,has some problems.We have first studied gas prediction problems and the basic theory of LS-SVM.Given these problems,we have investigated the affect of the time factor about safety prediction and present an on-line prediction algorithm,based on LS-SVM.Finally,given our observed data,we used the on-line algorithm to predict gas emissions and used other related algorithm to compare its performance.The simulation results have verified the validity of the new algorithm. 展开更多
关键词 LS-SVM GAS on-line learning PREDICTION
下载PDF
SVM model for estimating the parameters of the probability-integral method of predicting mining subsidence 被引量:11
18
作者 ZHANG Hua WANG Yun-jia LI Yong-feng 《Mining Science and Technology》 EI CAS 2009年第3期385-388,394,共5页
A new mathematical model to estimate the parameters of the probability-integral method for mining subsidence prediction is proposed.Based on least squares support vector machine(LS-SVM) theory, it is capable of improv... A new mathematical model to estimate the parameters of the probability-integral method for mining subsidence prediction is proposed.Based on least squares support vector machine(LS-SVM) theory, it is capable of improving the precision and reliability of mining subsidence prediction.Many of the geological and mining factors involved are related in a nonlinear way.The new model is based on statistical theory(SLT) and empirical risk minimization(ERM) principles.Typical data collected from observation stations were used for the learning and training samples.The calculated results from the LS-SVM model were compared with the prediction results of a back propagation neural network(BPNN) model.The results show that the parameters were more precisely predicted by the LS-SVM model than by the BPNN model.The LS-SVM model was faster in computation and had better generalized performance.It provides a highly effective method for calculating the predicting parameters of the probability-integral method. 展开更多
关键词 mining subsidence probability-integral method least squares support vector machine artificial neural networks
下载PDF
Forecasting model of residential load based on general regression neural network and PSO-Bayes least squares support vector machine 被引量:5
19
作者 何永秀 何海英 +1 位作者 王跃锦 罗涛 《Journal of Central South University》 SCIE EI CAS 2011年第4期1184-1192,共9页
Firstly,general regression neural network(GRNN) was used for variable selection of key influencing factors of residential load(RL) forecasting.Secondly,the key influencing factors chosen by GRNN were used as the input... Firstly,general regression neural network(GRNN) was used for variable selection of key influencing factors of residential load(RL) forecasting.Secondly,the key influencing factors chosen by GRNN were used as the input and output terminals of urban and rural RL for simulating and learning.In addition,the suitable parameters of final model were obtained through applying the evidence theory to combine the optimization results which were calculated with the PSO method and the Bayes theory.Then,the model of PSO-Bayes least squares support vector machine(PSO-Bayes-LS-SVM) was established.A case study was then provided for the learning and testing.The empirical analysis results show that the mean square errors of urban and rural RL forecast are 0.02% and 0.04%,respectively.At last,taking a specific province RL in China as an example,the forecast results of RL from 2011 to 2015 were obtained. 展开更多
关键词 residential load load forecasting general regression neural network (GRNN) evidence theory PSO-Bayes least squaressupport vector machine
下载PDF
Joint application of feature extraction based on EMD-AR strategy and multi-class classifier based on LS-SVM in EMG motion classification 被引量:5
20
作者 YAN Zhi-guo WANG Zhi-zhong REN Xiao-mei 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2007年第8期1246-1255,共10页
This paper presents an effective and efficient combination of feature extraction and multi-class classifier for motion classification by analyzing the surface electromyografic(sEMG) signals. In contrast to the existin... This paper presents an effective and efficient combination of feature extraction and multi-class classifier for motion classification by analyzing the surface electromyografic(sEMG) signals. In contrast to the existing methods,considering the non-stationary and nonlinear characteristics of EMG signals,to get the more separable feature set,we introduce the empirical mode decomposition(EMD) to decompose the original EMG signals into several intrinsic mode functions(IMFs) and then compute the coefficients of autoregressive models of each IMF to form the feature set. Based on the least squares support vector machines(LS-SVMs) ,the multi-class classifier is designed and constructed to classify various motions. The results of contrastive experiments showed that the accuracy of motion recognition is improved with the described classification scheme. Furthermore,compared with other classifiers using different features,the excellent performance indicated the potential of the SVM techniques embedding the EMD-AR kernel in motion classification. 展开更多
关键词 Electromyografic signal Empirical mode decomposition (EMD) Auto-regression model Wavelet packet transform Least squares support vector machines (LS-SVM) Neural network
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部