期刊文献+
共找到324篇文章
< 1 2 17 >
每页显示 20 50 100
序贯最小优化的改进算法 被引量:30
1
作者 李建民 张钹 林福宗 《软件学报》 EI CSCD 北大核心 2003年第5期918-924,共7页
序贯最小优化(sequential minimal optimization,简称SMO)算法是目前解决大量数据下支持向量机(support vector machine,简称SVM)训练问题的一种十分有效的方法,但是确定工作集的可行方向策略会降低缓存的效率.给出了SMO的一种可行方向... 序贯最小优化(sequential minimal optimization,简称SMO)算法是目前解决大量数据下支持向量机(support vector machine,简称SVM)训练问题的一种十分有效的方法,但是确定工作集的可行方向策略会降低缓存的效率.给出了SMO的一种可行方向法的解释,进而提出了一种收益代价平衡的工作集选择方法,综合考虑与工作集相关的目标函数的下降量和计算代价,以提高缓存的效率.实验结果表明,该方法可以提高SMO算法的性能,缩短SVM分类器的训练时间,特别适用于样本较多、支持向量较多、非有界支持向量较多的情况. 展开更多
关键词 支持向量机 机器学习 序贯最小优化 SMO算法
下载PDF
电容器串联电抗消除谐振的最大值最小优化 被引量:10
2
作者 邓朴 刘晓波 +2 位作者 皮显松 王丰元 刘凯 《电力系统保护与控制》 EI CSCD 北大核心 2016年第10期71-78,共8页
针对变电站并联电容器合理的串联电抗率,建立了适用于220 kV 和110 kV 变电站的全参数谐波电路和模型。该模型包含变电站短路阻抗、变压器、电容器、负荷以及谐波源,提出了以负荷母线谐波电压放大倍数等反映谐振程度的目标函数。采用... 针对变电站并联电容器合理的串联电抗率,建立了适用于220 kV 和110 kV 变电站的全参数谐波电路和模型。该模型包含变电站短路阻抗、变压器、电容器、负荷以及谐波源,提出了以负荷母线谐波电压放大倍数等反映谐振程度的目标函数。采用最大值最小优化方法,使目标函数在全部电网状态空间中的最大值通过调整电容器串联电抗率优化后达到最小,并对电容器电抗率的技术经济性进行了分析。计算结果表明:12%电抗率消除谐振的效果最好,并具有普适性;4.2%~4.5%电抗率的消除谐振效果其次,但具有更好技术经济价值,适应于大多数的220 kV 和110 kV 变电站。 展开更多
关键词 谐波 谐振 电容器 谐波放大 电抗率 谐波阻抗 最大值最小优化
下载PDF
一种训练支撑向量机的改进贯序最小优化算法 被引量:25
3
作者 孙剑 郑南宁 张志华 《软件学报》 EI CSCD 北大核心 2002年第10期2007-2013,共7页
对于大规模问题,分解方法是训练支撑向量机主要的一类方法.在很多分类问题中,有相当比例的支撑向量对应的拉格朗日乘子达到惩罚上界,而且在训练过程中到达上界的拉格朗日乘子变化平稳.利用这一统计特性,提出了一种有效的缓存策略来加速... 对于大规模问题,分解方法是训练支撑向量机主要的一类方法.在很多分类问题中,有相当比例的支撑向量对应的拉格朗日乘子达到惩罚上界,而且在训练过程中到达上界的拉格朗日乘子变化平稳.利用这一统计特性,提出了一种有效的缓存策略来加速这类分解方法,并将其具体应用于Platt的贯序最小优化(sequential minimization optimization,简称SMO) 算法中.实验结果表明,改进后的SMO算法的速度是原有算法训练的2~3倍. 展开更多
关键词 支撑向量机 贯序最小优化算法 机器学习 模式分类 二次规划 缓存策略
下载PDF
回归支持向量机的改进序列最小优化学习算法 被引量:32
4
作者 张浩然 韩正之 《软件学报》 EI CSCD 北大核心 2003年第12期2006-2013,共8页
支持向量机(support vector machine,简称SVM)是一种基于结构风险最小化原理的学习技术,也是一种新的具有很好泛化性能的回归方法,提出了实现回归支持向量机的一种改进的SMO(sequential minimal optimization)算法,给出了两变量子优化... 支持向量机(support vector machine,简称SVM)是一种基于结构风险最小化原理的学习技术,也是一种新的具有很好泛化性能的回归方法,提出了实现回归支持向量机的一种改进的SMO(sequential minimal optimization)算法,给出了两变量子优化问题的解析解,设计了新的工作集选择方法和停止条件,仿真实例说明,所提出的SMO算法比原始SMO算法具有更快的运算速度. 展开更多
关键词 支持向量机 核方法 回归 序列最小优化
下载PDF
支持向量机改进序列最小优化学习算法 被引量:10
5
作者 朱齐丹 张智 邢卓异 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2007年第2期183-188,共6页
为提高支持向量机序列最小优化学习算法的学习性能,提出了一种支持向量机改进序列最小优化学习算法,对传统SMO学习方法进行了多方面改进,从优化变量的选择和2个变量的优化方法分别提出具体可行的改进方法.改进后的SMO学习算法提高了学... 为提高支持向量机序列最小优化学习算法的学习性能,提出了一种支持向量机改进序列最小优化学习算法,对传统SMO学习方法进行了多方面改进,从优化变量的选择和2个变量的优化方法分别提出具体可行的改进方法.改进后的SMO学习算法提高了学习速度,加快了网络收敛速度.基于改进SMO算法的仿真结果验证了改进SMO算法的有效性和优越性,并通过仿真,与原始算法进行了比较,显示了改进SMO算法的快速性. 展开更多
关键词 支持向量机 序列最小优化 改进学习算法 回归问题
下载PDF
改进工作集选择策略的序贯最小优化算法 被引量:5
6
作者 曾志强 吴群 +1 位作者 廖备水 朱顺痣 《计算机研究与发展》 EI CSCD 北大核心 2009年第11期1925-1933,共9页
针对标准序贯最小优化(sequential minimal optimization,SMO)算法采用可行方向工作集选择策略所带来的缓存命中率低下问题,给出了SMO类型算法每次迭代所带来的目标函数下降量的二阶表达式,并据此提出了一种改进的工作集选择策略.新策... 针对标准序贯最小优化(sequential minimal optimization,SMO)算法采用可行方向工作集选择策略所带来的缓存命中率低下问题,给出了SMO类型算法每次迭代所带来的目标函数下降量的二阶表达式,并据此提出了一种改进的工作集选择策略.新策略综合考虑算法收敛所需的迭代次数及缓存效率,从总体上减少了核函数计算次数,因此极大提高了训练效率,并且,它在理论上具有严格的收敛保障.实验结果表明,核函数越复杂,样本维度越高,缓存容量相对训练样本的规模越小,改进工作集选择策略的SMO算法相较于标准SMO算法的性能提高就越显著. 展开更多
关键词 序贯最小优化 工作集 可行方向 缓存 收敛性
下载PDF
优化极限学习机的序列最小优化方法 被引量:18
7
作者 丁晓剑 赵银亮 《西安交通大学学报》 EI CAS CSCD 北大核心 2011年第6期7-12,19,共7页
针对传统二次规划求解方法训练优化极限学习机(OMELM)存在速度慢和效率低的问题,提出了单变量迭代序列最小优化(SSMO)算法.该算法通过在框式约束中优化拉格朗日乘子来实现目标函数的最小化:首先在初始化拉格朗日乘子中选择使目标函数值... 针对传统二次规划求解方法训练优化极限学习机(OMELM)存在速度慢和效率低的问题,提出了单变量迭代序列最小优化(SSMO)算法.该算法通过在框式约束中优化拉格朗日乘子来实现目标函数的最小化:首先在初始化拉格朗日乘子中选择使目标函数值下降最大的拉格朗日乘子,将该拉格朗日乘子作为目标函数的唯一变量;然后求解目标函数的最小值并更新该变量的值;重复这个过程直到所有的拉格朗日乘子都满足二次规划问题的Karush-Kuhn-Tucker条件为止.实验结果表明:SSMO算法只需调节很少的参数值便可得到足够好的泛化性能;采用SSMO算法的OMELM方法在泛化性能上要好于采用序列最小优化算法的支持向量机方法;在随机数据集测试中,SSMO算法具有较好的鲁棒性. 展开更多
关键词 极限学习机 支持向量机 序列最小优化
下载PDF
一种改进的支持向量机序列最小优化算法 被引量:6
8
作者 王越 吕奇峰 +1 位作者 王泉 曾晶 《重庆理工大学学报(自然科学)》 CAS 2013年第3期76-79,共4页
提出一种改进的序列最小优化算法,它在选取工作集时选取优化步长最大的违反KKT条件的样本和其配对样本,并且对求解过程进行简化,从而使训练过程速度更快。实验表明,该算法是有效、可行的。
关键词 支持向量机 序列最小优化 快速算法
下载PDF
一种改进的序贯最小优化算法 被引量:5
9
作者 骆世广 杨晓伟 +1 位作者 吴广潮 张新华 《计算机科学》 CSCD 北大核心 2006年第11期146-148,共3页
序贯最小优化(SMO)算法是目前解决支持向量机训练问题的一种十分有效的方法,但是当面对大样本数据时,SMO训练速度比较慢。本文分析了SMO迭代过程中目标函数值的变化情况,进而提出以目标函数值的改变量作为算法终止的判定条件。几个著名... 序贯最小优化(SMO)算法是目前解决支持向量机训练问题的一种十分有效的方法,但是当面对大样本数据时,SMO训练速度比较慢。本文分析了SMO迭代过程中目标函数值的变化情况,进而提出以目标函数值的改变量作为算法终止的判定条件。几个著名的数据集的试验结果表明,该方法可以大大缩短SMO的训练时间,特别适用于大样本数据。 展开更多
关键词 支持向量机 序贯最小优化算法
下载PDF
应用序列最小优化算法的火电厂协调系统的预测 被引量:2
10
作者 翟永杰 杨金芳 +2 位作者 徐大平 韩璞 王东风 《动力工程》 EI CSCD 北大核心 2005年第6期849-854,共6页
针对支持向量机二次规划(QP)算法处理大规模数据时计算复杂度高的问题,介绍了适宜处理大规模数据回归问题的序列最小优化(SMO)算法,并在该算法的基础上进行了改进,使运算速度得到进一步的提高。同时,将SMO算法及其改进算法(I-SMO)用于... 针对支持向量机二次规划(QP)算法处理大规模数据时计算复杂度高的问题,介绍了适宜处理大规模数据回归问题的序列最小优化(SMO)算法,并在该算法的基础上进行了改进,使运算速度得到进一步的提高。同时,将SMO算法及其改进算法(I-SMO)用于火电厂协调系统的预测,并同QP算法进行了比较。仿真结果表明,I-SMO算法比QP算法具有更高的预测精度和更快的运算速度,并且比SMO算法在计算速度方面又有较大的提高。 展开更多
关键词 自动控制技术 序列最小优化算法 改进 协调系统 预测
下载PDF
基于决策树的模糊序贯最小优化分类器的人脸识别 被引量:4
11
作者 宋晓宁 吴小俊 《江苏科技大学学报(自然科学版)》 CAS 北大核心 2006年第3期41-44,共4页
序贯最小优化算法是一种SVM s(Support VectorM ach ines)训练算法,该算法将一个大型QP(Quadratic Programm ing)问题分解为一系列最小规模的QP子问题,从而避免了多样本情形下的数值解不稳定及耗时问题,同时也不需要大的矩阵存储空间。... 序贯最小优化算法是一种SVM s(Support VectorM ach ines)训练算法,该算法将一个大型QP(Quadratic Programm ing)问题分解为一系列最小规模的QP子问题,从而避免了多样本情形下的数值解不稳定及耗时问题,同时也不需要大的矩阵存储空间。本文在模糊支持向量机的基础上,提出了基于决策树的模糊序贯最小优化算法并对它进行了分析和研究,在对人脸图像进行独立成分分析后,用该算法进行多类人脸识别。通过在ORL人脸库上的实验结果表明,在样本类别较少的条件下,该算法可以取得较好的效果。 展开更多
关键词 模糊支持向量机 人脸识别 特征提取 序贯最小优化 决策树
下载PDF
基于取样的潜在支持向量机序列最小优化算法 被引量:1
12
作者 鲁淑霞 曹贵恩 +1 位作者 孟洁 王华超 《河北大学学报(自然科学版)》 CAS 北大核心 2011年第2期113-117,共5页
为了提高潜在支持向量机求解大规模问题的训练速度,提出了基于样本取样的潜在支持向量机序列最小优化算法,去掉了大部分非支持向量,把支持向量逐渐压缩到取样样本集中.此算法特别适合大样本数据且支持向量个数相对较少的情况.实验表明,... 为了提高潜在支持向量机求解大规模问题的训练速度,提出了基于样本取样的潜在支持向量机序列最小优化算法,去掉了大部分非支持向量,把支持向量逐渐压缩到取样样本集中.此算法特别适合大样本数据且支持向量个数相对较少的情况.实验表明,改进的序列最小优化算法加速了潜在支持向量机分类器训练时间. 展开更多
关键词 潜在支持向量机 序列最小优化 取样
下载PDF
基于序列最小优化的SIFT特征提取与匹配算法 被引量:4
13
作者 廖小飞 庄新闯 +1 位作者 公维涛 陈建军 《计算机仿真》 北大核心 2019年第2期219-223,共5页
SIFT是特征提取与匹配技术中的一种有效的方法,具有较好的稳定性,以及旋转和尺度不变特性。但是SIFT特征提取与匹配的维数较高,且存在较大的误匹配率,影响双目立体视觉SLAM的实时性和准确率。为此,提出SMO-SIFT算法,对原SIFT进行欧氏距... SIFT是特征提取与匹配技术中的一种有效的方法,具有较好的稳定性,以及旋转和尺度不变特性。但是SIFT特征提取与匹配的维数较高,且存在较大的误匹配率,影响双目立体视觉SLAM的实时性和准确率。为此,提出SMO-SIFT算法,对原SIFT进行欧氏距离比值的阈值选取进行粗匹配,再结合支持向量机的SMO算法,改进SIFT算法中的特征匹配算子。MATLAB仿真表明SMO-SIFT算法降低了算法的维数,改善了特征提取的实时性,同时提高了算法精确度,比较适合应用于双目立体视觉SLAM中。 展开更多
关键词 尺度不变特征转换 特征提取与匹配 双目立体视觉即时定位与地图构建 序列最小优化
下载PDF
一种基于序贯最小优化改进的支持向量机空间有形小目标识别方法 被引量:1
14
作者 朱风云 秦世引 《宇航学报》 EI CAS CSCD 北大核心 2008年第1期197-201,共5页
提出了一种基于序贯最小优化改进的支持向量机空间有形小目标识别方法。首先陈述了空间有形目标识别的意义并分析了其特点,进而提出了一种基于预分类的两级分类识别策略。在此基础上重点针对空间有形小目标识别所具有的小样本学习问题... 提出了一种基于序贯最小优化改进的支持向量机空间有形小目标识别方法。首先陈述了空间有形目标识别的意义并分析了其特点,进而提出了一种基于预分类的两级分类识别策略。在此基础上重点针对空间有形小目标识别所具有的小样本学习问题的本质和特点,采用基于序贯最小优化(Sequential Minimal Optimization:SMO)改进的支持向量机解决训练问题,从而提高了训练的效率和精度。最后,通过10类空间有形小目标共1360个成像尺度不大于30×30像素的仿真样本进行仿真检验,结果表明本文所提出的识别方法的正确率达到了98%(训练样本数454,测试样本数906),完全可以满足实际应用需要,而且具有良好的实时性。 展开更多
关键词 空间有形小目标 目标识别 支持向量机 序贯最小优化
下载PDF
求解双边加权模糊支持向量机的序贯最小优化算法
15
作者 李艳 杨晓伟 《计算机应用》 CSCD 北大核心 2011年第12期3297-3301,3317,共6页
高的计算复杂度限制了双边加权模糊支持向量机在实际分类问题中的应用。为了降低计算复杂度,提出了应用序贯最小优化算法(SMO)解该模型,该模型首先将整个二次规划问题分解成一系列规模为2的二次规划子问题,然后求解这些二次规划子问题... 高的计算复杂度限制了双边加权模糊支持向量机在实际分类问题中的应用。为了降低计算复杂度,提出了应用序贯最小优化算法(SMO)解该模型,该模型首先将整个二次规划问题分解成一系列规模为2的二次规划子问题,然后求解这些二次规划子问题。为了测试SMO算法的性能,在三个真实数据集和两个人工数据集上进行了数值实验。结果表明:与传统的内点算法相比,在不损失测试精度的情况下,SMO算法明显地降低了模型的计算复杂度,使其在实际中的应用成为可能。 展开更多
关键词 序贯最小优化 双边加权模糊支持向量机 支持向量机 模糊支持向量机
下载PDF
利用串行最小优化算法求解回归估计问题
16
作者 郭国雄 《计算机工程与应用》 CSCD 北大核心 2004年第2期99-101,共3页
支撑矢量机是以Vapnik的统计学习理论为基础,以结构风险最小化为原则的新型学习机。目前,对它的研究是国际上的一个研究热点。针对大数据量的回归估计问题,论文提出了一种新的求解方法。为了说明该方法的有效性,给出了数值模拟的例子。
关键词 支撑矢量机 串行最小优化 回归估计
下载PDF
训练支持向量机的并行序列最小优化方法 被引量:4
17
作者 曹丽娟 王小明 《计算机工程》 CAS CSCD 北大核心 2007年第18期184-186,共3页
序列最小优化(SMO)是训练支持向量机(SVM)的常见算法,在求解大规模问题时,需要耗费大量的计算时间。该文提出了SMO的一种并行实现方法,验证了该算法的有效性。实验结果表明,当采用多处理器时,并行SMO具有较大的加速比。
关键词 支持向量机 序列最小优化 并行算法
下载PDF
支持向量机序贯最小优化算法推导的改进
18
作者 谢树新 《电脑知识与技术(过刊)》 2009年第4X期4522-4524,共3页
已有文献中的支持向量机SMO算法推导过程计算复杂,该文给出一个简洁推导。整个推导过程没有复杂的计算,除了误差函数外,不需引入其它中间变量。
关键词 支持向量机(SVM) 序贯最小优化算法(SMO) 二次规划 差分算子
下载PDF
一种改进序贯最小优化算法的方法 被引量:2
19
作者 项堃 喻莹 《现代电子技术》 2013年第8期17-19,共3页
序贯最小优化算法(SMO)是支持向量机(SVM)训练算法中一种十分有效的改进方法,但针对大规模样本数据时,SMO训练速度仍比较慢。为了提高训练速度,在基本保持训练精度的前提下,提出了一种改进优化策略:即跳过部分与精度无关的向量集、提前... 序贯最小优化算法(SMO)是支持向量机(SVM)训练算法中一种十分有效的改进方法,但针对大规模样本数据时,SMO训练速度仍比较慢。为了提高训练速度,在基本保持训练精度的前提下,提出了一种改进优化策略:即跳过部分与精度无关的向量集、提前结束循环、松弛KKT条件以便收缩工作集。经过几个著名的数据集的试验结果表明,此策略可以大幅缩短SMO的训练时间,并且精度没有明显变化。 展开更多
关键词 支持向量机 序贯最小优化算法 去除无关向量 收缩工作集
下载PDF
BaFBr:Eu^(2+)的F心研究及一种能量最小优化方法的应用
20
作者 赵兴华 吕玉鹏 陈凌孚 《南京师大学报(自然科学版)》 CAS CSCD 2002年第4期49-52,56,共5页
 根据Hartree Fork近似基础上的扩展离子处理方法研究BaFX:Eu2+中的缺陷问题,并且对晶格系统总能量进行能量最小优化,模拟PSL现象,得到了与实验值符合的结果,从而导出F心的吸收谱的产生机制.因此,此种能量最小优化方法可用于类似问题.
关键词 磷光体材料 BAFBR:EU^2+ F心 缺陷 能量最小优化方法 晶格系统 吸收谱 基态 激发态
下载PDF
上一页 1 2 17 下一页 到第
使用帮助 返回顶部