Improving the prediction accuracy of wind power is an effective means to reduce the impact of wind power on power grid.Therefore,we proposed an improved African vulture optimization algorithm(AVOA)to realize the predi...Improving the prediction accuracy of wind power is an effective means to reduce the impact of wind power on power grid.Therefore,we proposed an improved African vulture optimization algorithm(AVOA)to realize the prediction model of multi-objective optimization least squares support vector machine(LSSVM).Firstly,the original wind power time series was decomposed into a certain number of intrinsic modal components(IMFs)using variational modal decomposition(VMD).Secondly,random numbers in population initialization were replaced by Tent chaotic mapping,multi-objective LSSVM optimization was introduced by AVOA improved by elitist non-dominated sorting and crowding operator,and then each component was predicted.Finally,Tent multi-objective AVOA-LSSVM(TMOALSSVM)method was used to sum each component to obtain the final prediction result.The simulation results show that the improved AVOA based on Tent chaotic mapping,the improved non-dominated sorting algorithm with elite strategy,and the improved crowding operator are the optimal models for single-objective and multi-objective prediction.Among them,TMOALSSVM model has the smallest average error of stroke power values in four seasons,which are 0.0694,0.0545 and 0.0211,respectively.The average value of DS statistics in the four seasons is 0.9902,and the statistical value is the largest.The proposed model effectively predicts four seasons of wind power values on lateral and longitudinal precision,and faster and more accurately finds the optimal solution on the current solution space sets,which proves that the method has a certain scientific significance in the development of wind power prediction technology.展开更多
The transfer system,an important subsystem in urban citizen passenger transport system,is a guarantee of public transport priority and is crucial in the whole urban passenger transport traffic.What the majority of bus...The transfer system,an important subsystem in urban citizen passenger transport system,is a guarantee of public transport priority and is crucial in the whole urban passenger transport traffic.What the majority of bus passengers consider is the convenience and comfort of the bus ride,which reduces the transfer time of bus passengers."Transfer time" is considered to be the first factor by the majority of bus passengers who select the routes.In this paper,according to the needs of passengers,optimization algorithm,with the minimal distance being the first goal,namely,the improved Dijkstra algorithm based on the minimal distance,is put forward on the basis of the optimization algorithm with the minimal transfer time being the first goal.展开更多
This paper is concerned with the fractional version of online hierarchical scheduling problem on uniform machines.In the problem,the jobs and machines have several different hierarchies and each job can be arbitrarily...This paper is concerned with the fractional version of online hierarchical scheduling problem on uniform machines.In the problem,the jobs and machines have several different hierarchies and each job can be arbitrarily split between the machines with hierarchies not above the hierarchy of the job.The objective is to minimize the makespan.The authors present an optimal algorithm for the problem with three hierarchies.展开更多
The authors present a semi-definite relaxation algorithm for the scheduling problem with controllable times on a single machine. Their approach shows how to relate this problem with the maximum vertex-cover problem wi...The authors present a semi-definite relaxation algorithm for the scheduling problem with controllable times on a single machine. Their approach shows how to relate this problem with the maximum vertex-cover problem with kernel constraints (MKVC).The established relationship enables to transfer the approximate solutions of MKVCinto the approximate solutions for the scheduling problem. Then, they show how to obtain an integer approximate solution for MKVC based on the semi-definite relaxation and randomized rounding technique.展开更多
基金supported by National Natural Science Foundation of China(Nos.61662042,62062049)Science and Technology Plan of Gansu Province(Nos.21JR7RA288,21JR7RE174).
文摘Improving the prediction accuracy of wind power is an effective means to reduce the impact of wind power on power grid.Therefore,we proposed an improved African vulture optimization algorithm(AVOA)to realize the prediction model of multi-objective optimization least squares support vector machine(LSSVM).Firstly,the original wind power time series was decomposed into a certain number of intrinsic modal components(IMFs)using variational modal decomposition(VMD).Secondly,random numbers in population initialization were replaced by Tent chaotic mapping,multi-objective LSSVM optimization was introduced by AVOA improved by elitist non-dominated sorting and crowding operator,and then each component was predicted.Finally,Tent multi-objective AVOA-LSSVM(TMOALSSVM)method was used to sum each component to obtain the final prediction result.The simulation results show that the improved AVOA based on Tent chaotic mapping,the improved non-dominated sorting algorithm with elite strategy,and the improved crowding operator are the optimal models for single-objective and multi-objective prediction.Among them,TMOALSSVM model has the smallest average error of stroke power values in four seasons,which are 0.0694,0.0545 and 0.0211,respectively.The average value of DS statistics in the four seasons is 0.9902,and the statistical value is the largest.The proposed model effectively predicts four seasons of wind power values on lateral and longitudinal precision,and faster and more accurately finds the optimal solution on the current solution space sets,which proves that the method has a certain scientific significance in the development of wind power prediction technology.
基金supported by School Foundation of North University of ChinaPostdoctoral granted financial support from China Postdoctoral Science Foundation(20100481307)+1 种基金Natural Science Foundation of Shanxi(2009011018-3)National Natural Science Foundation of China(60876077)
文摘The transfer system,an important subsystem in urban citizen passenger transport system,is a guarantee of public transport priority and is crucial in the whole urban passenger transport traffic.What the majority of bus passengers consider is the convenience and comfort of the bus ride,which reduces the transfer time of bus passengers."Transfer time" is considered to be the first factor by the majority of bus passengers who select the routes.In this paper,according to the needs of passengers,optimization algorithm,with the minimal distance being the first goal,namely,the improved Dijkstra algorithm based on the minimal distance,is put forward on the basis of the optimization algorithm with the minimal transfer time being the first goal.
基金supported by National Natural Science Foundation of China under Grant No.11171106
文摘This paper is concerned with the fractional version of online hierarchical scheduling problem on uniform machines.In the problem,the jobs and machines have several different hierarchies and each job can be arbitrarily split between the machines with hierarchies not above the hierarchy of the job.The objective is to minimize the makespan.The authors present an optimal algorithm for the problem with three hierarchies.
文摘The authors present a semi-definite relaxation algorithm for the scheduling problem with controllable times on a single machine. Their approach shows how to relate this problem with the maximum vertex-cover problem with kernel constraints (MKVC).The established relationship enables to transfer the approximate solutions of MKVCinto the approximate solutions for the scheduling problem. Then, they show how to obtain an integer approximate solution for MKVC based on the semi-definite relaxation and randomized rounding technique.