提出了一种采用结构总体最小二乘(Structured total least squares,STLS)进行卫星惯量矩阵在轨估计的方法,与当前估计方法相比,该方法在考虑敏感器测量噪声时能获得一致估计。首先由动量守恒定律得到估计方程,针对该方程的特点定义了惯...提出了一种采用结构总体最小二乘(Structured total least squares,STLS)进行卫星惯量矩阵在轨估计的方法,与当前估计方法相比,该方法在考虑敏感器测量噪声时能获得一致估计。首先由动量守恒定律得到估计方程,针对该方程的特点定义了惯量矩阵的STLS估计,并使用结构总体最小范数(Structured total least norm,STLN)算法进行求解。证明了当噪声为高斯分布时该STLS估计为极大似然估计,给出了该STLS估计具有一致性的充分条件,仿真结果验证了文章所提估计方法的有效性。展开更多
Aiming at the optimum path excluding characteristics and the full constellation searching characteristics of the K-best detection algorithm, an improved-performance K-best detection algorithm and several reduced-compl...Aiming at the optimum path excluding characteristics and the full constellation searching characteristics of the K-best detection algorithm, an improved-performance K-best detection algorithm and several reduced-complexity K-best detection algorithms are proposed. The improved-performance K-best detection algorithm deploys minimum mean square error (MMSE) filtering of a channel matrix before QR decomposition. This algorithm can decrease the probability of excluding the optimum path and achieve better performance. The reducedcomplexity K-best detection algorithms utilize a sphere decoding method to reduce searching constellation points. Simulation results show that the improved performance K-best detection algorithm obtains a 1 dB performance gain compared to the K- best detection algorithm based on sorted QR decomposition (SQRD). Performance loss occurs when K = 4 in reduced complexity K-best detection algorithms. When K = 8, the reduced complexity K-best detection algorithms require less computational effort compared with traditional K-best detection algorithms and achieve the same performance.展开更多
The probability distributions of wind speeds and the availability of wind turbines were investigated by considering the vertical wind shear. Based on the wind speed data at the standard height observed at a wind farm,...The probability distributions of wind speeds and the availability of wind turbines were investigated by considering the vertical wind shear. Based on the wind speed data at the standard height observed at a wind farm, the power-law process was used to simulate the wind speeds at a hub height of 60 m. The Weibull and Rayleigh distributions were chosen to express the wind speeds at two different heights. The parameters in the model were estimated via the least square(LS) method and the maximum likelihood estimation(MLE) method, respectively. An adjusted MLE approach was also presented for parameter estimation. The main indices of wind energy characteristics were calculated based on observational wind speed data. A case study based on the data of Hexi area, Gansu Province of China was given. The results show that MLE method generally outperforms LS method for parameter estimation, and Weibull distribution is more appropriate to describe the wind speed at the hub height.展开更多
The multiply type-I censoring represented that all units in life test were terminated at different times. For estimations of Weibull parameters, it was easy to compute the maximum likelihood estimation (MLE) and lea...The multiply type-I censoring represented that all units in life test were terminated at different times. For estimations of Weibull parameters, it was easy to compute the maximum likelihood estimation (MLE) and least-squares estimation (LSE) while it was hard to build confidence intervals (CI). The concept of generalized confidence interval (GCI) was introduced to build CIs of parameters under multiply type-I censoring. Further, GCI based on LSE and GCI based on MLE were proposed. It is mathematically proved that the former is exact and the latter is approximate. Besides, a Monte Carlo simulation study and an illustrative example also Ran out that the GCI method based on LSE yields rather satisfactory results by comparison with the ones based on MLE. It should be clear that the GCI method is a sensible choice to evaluate reliability under multiply type-I censoring.展开更多
Soft output Viterbi algorithm (SOVA) is a turbo decoding algorithm that is suitable for hardware implementation. But its performance is not so good as maximum a posterior probability(MAP) algorithm. So it is very ...Soft output Viterbi algorithm (SOVA) is a turbo decoding algorithm that is suitable for hardware implementation. But its performance is not so good as maximum a posterior probability(MAP) algorithm. So it is very important to improve its performance. The non-correlation between minimum and maximum likelihood paths in SOVA is analyzed. The metric difference of both likelihood paths is used as iterative soft information, which is not the same as the traditional SOVA. The performance of the proposed SOVA is demonstrated by the simulations. For 1 024-bit frame size and 9 iterations with signal to noise ratio from 1 dB to 4 dB, the experimental results show that the new SOVA algorithm obtains about more 0. 4 dB and 0. 2 dB coding gains more than the traditional SOVA and Bi-SOVA algorithms at bit error rate(BER) of 1 × 10^-4 , while the latency is only half of the Bi-direction SOVA decoding.展开更多
A new type of despreader for direct sequence spread spectrum signal is proposed. Compared with traditional despreaders, the new despreader does not contain hard decision ware or handle binary sequence any more, and th...A new type of despreader for direct sequence spread spectrum signal is proposed. Compared with traditional despreaders, the new despreader does not contain hard decision ware or handle binary sequence any more, and the locally stored spread spectrum signals are pre-modulated baseband signals (such as Gaussian minimum shift keying (GMSK) signals), which are much more similar to the received spread spectrum signals. Moreover, the missed detection probability of the despreader is about one order of magnitude lower than that of traditional ones. Based on the maximum likelihood criterion and phase probability density function of demodulated signal, a new method of ana- lyzing the despreaders’ performance is put forward, which is proved to be more accurate than traditional methods according to the numerical results. Finally, an adaptive despreader under different signal-to-noise ratios is given.展开更多
Multiply robust inference has attracted much attention recently in the context of missing response data. An estimation procedure is multiply robust, if it can incorporate information from multiple candidate models, an...Multiply robust inference has attracted much attention recently in the context of missing response data. An estimation procedure is multiply robust, if it can incorporate information from multiple candidate models, and meanwhile the resulting estimator is consistent as long as one of the candidate models is correctly specified. This property is appealing, since it provides the user a flexible modeling strategy with better protection against model misspecification. We explore this attractive property for the regression models with a binary covariate that is missing at random. We start from a reformulation of the celebrated augmented inverse probability weighted estimating equation, and based on this reformulation, we propose a novel combination of the least squares and empirical likelihood to separately handle each of the two types of multiple candidate models,one for the missing variable regression and the other for the missingness mechanism. Due to the separation, all the working models are fused concisely and effectively. The asymptotic normality of our estimator is established through the theory of estimating function with plugged-in nuisance parameter estimates. The finite-sample performance of our procedure is illustrated both through the simulation studies and the analysis of a dementia data collected by the national Alzheimer's coordinating center.展开更多
文摘提出了一种采用结构总体最小二乘(Structured total least squares,STLS)进行卫星惯量矩阵在轨估计的方法,与当前估计方法相比,该方法在考虑敏感器测量噪声时能获得一致估计。首先由动量守恒定律得到估计方程,针对该方程的特点定义了惯量矩阵的STLS估计,并使用结构总体最小范数(Structured total least norm,STLN)算法进行求解。证明了当噪声为高斯分布时该STLS估计为极大似然估计,给出了该STLS估计具有一致性的充分条件,仿真结果验证了文章所提估计方法的有效性。
基金The National High Technology Research and Develop-ment Program of China (863Program)(No.2006AA01Z264)the National Natural Science Foundation of China (No.60572072)
文摘Aiming at the optimum path excluding characteristics and the full constellation searching characteristics of the K-best detection algorithm, an improved-performance K-best detection algorithm and several reduced-complexity K-best detection algorithms are proposed. The improved-performance K-best detection algorithm deploys minimum mean square error (MMSE) filtering of a channel matrix before QR decomposition. This algorithm can decrease the probability of excluding the optimum path and achieve better performance. The reducedcomplexity K-best detection algorithms utilize a sphere decoding method to reduce searching constellation points. Simulation results show that the improved performance K-best detection algorithm obtains a 1 dB performance gain compared to the K- best detection algorithm based on sorted QR decomposition (SQRD). Performance loss occurs when K = 4 in reduced complexity K-best detection algorithms. When K = 8, the reduced complexity K-best detection algorithms require less computational effort compared with traditional K-best detection algorithms and achieve the same performance.
基金Project(51165019)supported by the National Natural Science Foundation of ChinaProject(1308RJYA018)supported by Gansu Provincial Natural Science Fund,ChinaProject(2013-4-110)supported by Lanzhou Technology Development Program,China
文摘The probability distributions of wind speeds and the availability of wind turbines were investigated by considering the vertical wind shear. Based on the wind speed data at the standard height observed at a wind farm, the power-law process was used to simulate the wind speeds at a hub height of 60 m. The Weibull and Rayleigh distributions were chosen to express the wind speeds at two different heights. The parameters in the model were estimated via the least square(LS) method and the maximum likelihood estimation(MLE) method, respectively. An adjusted MLE approach was also presented for parameter estimation. The main indices of wind energy characteristics were calculated based on observational wind speed data. A case study based on the data of Hexi area, Gansu Province of China was given. The results show that MLE method generally outperforms LS method for parameter estimation, and Weibull distribution is more appropriate to describe the wind speed at the hub height.
基金Project(71371182) supported by the National Natural Science Foundation of China
文摘The multiply type-I censoring represented that all units in life test were terminated at different times. For estimations of Weibull parameters, it was easy to compute the maximum likelihood estimation (MLE) and least-squares estimation (LSE) while it was hard to build confidence intervals (CI). The concept of generalized confidence interval (GCI) was introduced to build CIs of parameters under multiply type-I censoring. Further, GCI based on LSE and GCI based on MLE were proposed. It is mathematically proved that the former is exact and the latter is approximate. Besides, a Monte Carlo simulation study and an illustrative example also Ran out that the GCI method based on LSE yields rather satisfactory results by comparison with the ones based on MLE. It should be clear that the GCI method is a sensible choice to evaluate reliability under multiply type-I censoring.
基金Guangzhou Science and Technology Project(2004Z3 -D0321) Guangdong Science and Technology Project(200510101013)
文摘Soft output Viterbi algorithm (SOVA) is a turbo decoding algorithm that is suitable for hardware implementation. But its performance is not so good as maximum a posterior probability(MAP) algorithm. So it is very important to improve its performance. The non-correlation between minimum and maximum likelihood paths in SOVA is analyzed. The metric difference of both likelihood paths is used as iterative soft information, which is not the same as the traditional SOVA. The performance of the proposed SOVA is demonstrated by the simulations. For 1 024-bit frame size and 9 iterations with signal to noise ratio from 1 dB to 4 dB, the experimental results show that the new SOVA algorithm obtains about more 0. 4 dB and 0. 2 dB coding gains more than the traditional SOVA and Bi-SOVA algorithms at bit error rate(BER) of 1 × 10^-4 , while the latency is only half of the Bi-direction SOVA decoding.
基金Supported by National Natural Science Foundation of China (No. 60572147) National "111" Program of Introducing Talents of Discipline to Universities (No. B08038)
文摘A new type of despreader for direct sequence spread spectrum signal is proposed. Compared with traditional despreaders, the new despreader does not contain hard decision ware or handle binary sequence any more, and the locally stored spread spectrum signals are pre-modulated baseband signals (such as Gaussian minimum shift keying (GMSK) signals), which are much more similar to the received spread spectrum signals. Moreover, the missed detection probability of the despreader is about one order of magnitude lower than that of traditional ones. Based on the maximum likelihood criterion and phase probability density function of demodulated signal, a new method of ana- lyzing the despreaders’ performance is put forward, which is proved to be more accurate than traditional methods according to the numerical results. Finally, an adaptive despreader under different signal-to-noise ratios is given.
基金supported by National Natural Science Foundation of China(Grant No.11301031)
文摘Multiply robust inference has attracted much attention recently in the context of missing response data. An estimation procedure is multiply robust, if it can incorporate information from multiple candidate models, and meanwhile the resulting estimator is consistent as long as one of the candidate models is correctly specified. This property is appealing, since it provides the user a flexible modeling strategy with better protection against model misspecification. We explore this attractive property for the regression models with a binary covariate that is missing at random. We start from a reformulation of the celebrated augmented inverse probability weighted estimating equation, and based on this reformulation, we propose a novel combination of the least squares and empirical likelihood to separately handle each of the two types of multiple candidate models,one for the missing variable regression and the other for the missingness mechanism. Due to the separation, all the working models are fused concisely and effectively. The asymptotic normality of our estimator is established through the theory of estimating function with plugged-in nuisance parameter estimates. The finite-sample performance of our procedure is illustrated both through the simulation studies and the analysis of a dementia data collected by the national Alzheimer's coordinating center.