期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
可平移格点多边形的内格点数
1
作者 魏祥林 张玉琴 《石家庄铁道学院学报》 2005年第1期36-38,共3页
   给定多边形P,如果经过平移P可以覆盖整个平面,则称之为可平移多边形。若P为凸格点多边形,其内部边界不交平移覆盖平面格点集,则称之为可平移格点多边形TLP。记顶点数为v的TLP的内格点数的下确界为i(v) ,得出i(5) =i(6) =1,i(7) =i(...    给定多边形P,如果经过平移P可以覆盖整个平面,则称之为可平移多边形。若P为凸格点多边形,其内部边界不交平移覆盖平面格点集,则称之为可平移格点多边形TLP。记顶点数为v的TLP的内格点数的下确界为i(v) ,得出i(5) =i(6) =1,i(7) =i(8) =4。证明了随着TLP顶点数的增加,内格点数无限增加。并得出在允许旋转 180°条件下,有任意内格点数的三角形TLP, 任意格点四边形都是TLP。 展开更多
关键词 覆盖 点集 可平移点多边形 最小内格点数
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部