期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
最小反射率法的资源三号影像大气校正
1
作者 魏廉爽 付兴科 +4 位作者 王丹彤 唐洪钊 陈伟 宋明宇 孙文彬 《测绘科学》 CSCD 北大核心 2020年第4期44-50,共7页
针对目前资源三号卫星数据缺少短波红外波段难以采用暗目标方法进行地表反射率反演的问题,该文提出一种基于最小反射率法获取大气参数结合6S辐射传射模型建立查找表进行大气校正的方法,并从校正前后影像值与地面实测反射率数据对比和归... 针对目前资源三号卫星数据缺少短波红外波段难以采用暗目标方法进行地表反射率反演的问题,该文提出一种基于最小反射率法获取大气参数结合6S辐射传射模型建立查找表进行大气校正的方法,并从校正前后影像值与地面实测反射率数据对比和归一化植被指数(NDVI)两个方面对校正效果进行了探讨。结果表明:①与5%、20%、40%、60%靶标的实测值对比,地表反射率值比表观反射率值更加接近靶标的真实测量值,反演的地表反射率与实测值绝对误差最大值为11.83%,最小值为0.21%,大气校正效果非常明显;②大气校正一方面增大了居民地与裸地的NDVI值,使水体与居民地、裸地易于区分,另一方面增大了植被与其他地物的NDVI差值,突出了植被信息,提高了提取植被的能力。 展开更多
关键词 资源三号卫星 最小反射率 地表反射率 6S辐射传输 查找表
原文传递
碳团簇型材料微波隐身性能研究
2
作者 徐国亮 罗洁 +2 位作者 刘波 蒋刚 朱正和 《原子核物理评论》 CAS CSCD 北大核心 2002年第z1期131-133,共3页
平面环状碳团簇是一种特殊的大分子 ,计算表明其转动能级变化的谱线富集于 1—2 0GHz的微波区 .利用该特性制得了碳团簇型微波隐身材料 .测试结果表明 ,对于双层材料 ,最小反射率达 -3 1dB ,有效频带宽度为 2 .3GHz,同时 ,将该材料长时... 平面环状碳团簇是一种特殊的大分子 ,计算表明其转动能级变化的谱线富集于 1—2 0GHz的微波区 .利用该特性制得了碳团簇型微波隐身材料 .测试结果表明 ,对于双层材料 ,最小反射率达 -3 1dB ,有效频带宽度为 2 .3GHz,同时 ,将该材料长时间处于自然条件下 。 展开更多
关键词 平面环状碳团簇 微波隐身 最小反射率 宽频
下载PDF
光纤SPR传感器测量液体折射率的研究 被引量:9
3
作者 曾捷 梁大开 曹振新 《压电与声光》 CSCD 北大核心 2005年第1期18-20,共3页
通过一套基于表面等离子体波共振(SPR)效应的新型光纤传感系统,对三种具有相同折射率而类型不同的液体介质进行测试。通过研究SPR传感探头在四种不同液体介质中的光谱输出特性,获得SPR光谱共振波长、最小光强反射率随液体折射率、类型... 通过一套基于表面等离子体波共振(SPR)效应的新型光纤传感系统,对三种具有相同折射率而类型不同的液体介质进行测试。通过研究SPR传感探头在四种不同液体介质中的光谱输出特性,获得SPR光谱共振波长、最小光强反射率随液体折射率、类型不同而改变的特性。这些工作为下一步使用光纤SPR传感探头进行复合材料的固化监测以及加工成型后的应变检测提供了依据。 展开更多
关键词 表面等离子体波共振(SPR) 共振波长 最小光强反射率 折射率
下载PDF
Influence of inaccurate wavelet phase estimation on seismic inversion 被引量:18
4
作者 Yuan San-Yi Wang Shang-Xu 《Applied Geophysics》 SCIE CSCD 2011年第1期48-59,95,共13页
On the assumption that the seismic wavelet amplitude spectrum is estimated accurately, a group of wavelets with different phase spectra, regarded as estimated wavelets, are used to implement linear least-squares inver... On the assumption that the seismic wavelet amplitude spectrum is estimated accurately, a group of wavelets with different phase spectra, regarded as estimated wavelets, are used to implement linear least-squares inversion. During inversion, except for the wavelet phase, all other factors affecting inversion results are not taken into account. The inversion results of a sparse reflectivity model (or blocky impedance model) show that: (1) although the synthetic data using inversion results matches well with the original seismic data, the inverted reflectivity and acoustic impedance are different from that of the real model. (2) the inversion result reliability is dependent on the estimated wavelet Z transform root distribution. When the estimated wavelet Z transform roots only differ from that of the real wavelet near the unit circle, the inverted reflectivity and impedance are usually consistent with the real model; (3) although the synthetic data matches well with the original data and the Cauchy norm (or modified Cauchy norm) with a constant damping parameter has been optimized, the inverted results are still greatly different from the real model. Finally, we suggest using the L1 norm, Kurtosis, variation, Cauchy norm with adaptive damping parameter or/and modified Cauchy norm with adaptive damping parameter as evaluation criteria to reduce the bad influence of inaccurate wavelet phase estimation and obtain good results in theory. 展开更多
关键词 PHASE seismic wavelet INVERSION evaluation criterion ROOT
下载PDF
Model-Based Integrated Methods for Quantitative Estimation of Soil Salinity from Hyperspectral Remote Sensing Data:A Case Study of Selected South African Soils 被引量:31
5
作者 Z. E. MASHIMBYE M. A. CHO +3 位作者 J. P. NELL W. P. DE CLERCQ A. VAN NIEKERK D. P. TURNER 《Pedosphere》 SCIE CAS CSCD 2012年第5期640-649,共10页
Soil salinization is a land degradation process that leads to reduced agricultural yields. This study investigated the method that can best predict electrical conductivity (EC) in dry soils using individual bands, a n... Soil salinization is a land degradation process that leads to reduced agricultural yields. This study investigated the method that can best predict electrical conductivity (EC) in dry soils using individual bands, a normalized difference salinity index (NDSI), partial least squares regression (PLSR), and bagging PLSR. Soil spectral reflectance of dried, ground, and sieved soil samples containing varying amounts of EC was measured using an ASD FieldSpec spectrometer in a darkroom. Predictive models were computed using a training dataset. An independent validation dataset was used to validate the models. The results showed that good predictions could be made based on bagging PLSR using first derivative reflectance (validation R2 = 0.85), PLSR using untransformed reflectance (validation R2 = 0.70), NDSI (validation R2 = 0.65), and the untransformed individual band at 2257 nm (validation R2 = 0.60) predictive models. These suggested the potential of mapping soil salinity using airborne and/or satellite hyperspectral data during dry seasons. 展开更多
关键词 electrical conductivity land degradation partial least squares regression salinity index spectral reflectance
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部