在无线直放站反馈干扰抵消的过程中,自适应滤波器的误差信号可以接收目标信号与残余回波的混合,是阻碍滤波器根据残余回波强度,快速调整抽头系数.利用误差信号的特点,给出了一种基于信噪比的改进变步长最小均平方(least mean square,LMS...在无线直放站反馈干扰抵消的过程中,自适应滤波器的误差信号可以接收目标信号与残余回波的混合,是阻碍滤波器根据残余回波强度,快速调整抽头系数.利用误差信号的特点,给出了一种基于信噪比的改进变步长最小均平方(least mean square,LMS)自适应算法.该算法利用误差信号和滤波器的输出信号作为目标信号和反馈干扰信号的估计,根据目标与干扰信号的功率比值来调整自适应滤波器的步长.计算机仿真结果表明,该算法具有快速的初始收敛速率和较小的超量均方误差.在稳态情况下,对于干扰的突变能够快速地再次收敛,表明该算法在反馈干扰抵消方面的性能优于已有的算法.展开更多
In order to characterize the voltage behavior of a lithium-ion battery for on-board electric vehicle battery management and control applications,a battery model with a moderate complexity was established.The battery o...In order to characterize the voltage behavior of a lithium-ion battery for on-board electric vehicle battery management and control applications,a battery model with a moderate complexity was established.The battery open circuit voltage (OCV) as a function of state of charge (SOC) was depicted by the Nernst equation.An equivalent circuit network was adopted to describe the polarization effect of the lithium-ion battery.A linear identifiable formulation of the battery model was derived by discretizing the frequent-domain description of the battery model.The recursive least square algorithm with forgetting was applied to implement the on-line parameter calibration.The validation results show that the on-line calibrated model can accurately predict the dynamic voltage behavior of the lithium-ion battery.The maximum and mean relative errors are 1.666% and 0.01%,respectively,in a hybrid pulse test,while 1.933% and 0.062%,respectively,in a transient power test.The on-line parameter calibration method thereby can ensure that the model possesses an acceptable robustness to varied battery loading profiles.展开更多
文摘在无线直放站反馈干扰抵消的过程中,自适应滤波器的误差信号可以接收目标信号与残余回波的混合,是阻碍滤波器根据残余回波强度,快速调整抽头系数.利用误差信号的特点,给出了一种基于信噪比的改进变步长最小均平方(least mean square,LMS)自适应算法.该算法利用误差信号和滤波器的输出信号作为目标信号和反馈干扰信号的估计,根据目标与干扰信号的功率比值来调整自适应滤波器的步长.计算机仿真结果表明,该算法具有快速的初始收敛速率和较小的超量均方误差.在稳态情况下,对于干扰的突变能够快速地再次收敛,表明该算法在反馈干扰抵消方面的性能优于已有的算法.
基金Project(50905015) supported by the National Natural Science Foundation of China
文摘In order to characterize the voltage behavior of a lithium-ion battery for on-board electric vehicle battery management and control applications,a battery model with a moderate complexity was established.The battery open circuit voltage (OCV) as a function of state of charge (SOC) was depicted by the Nernst equation.An equivalent circuit network was adopted to describe the polarization effect of the lithium-ion battery.A linear identifiable formulation of the battery model was derived by discretizing the frequent-domain description of the battery model.The recursive least square algorithm with forgetting was applied to implement the on-line parameter calibration.The validation results show that the on-line calibrated model can accurately predict the dynamic voltage behavior of the lithium-ion battery.The maximum and mean relative errors are 1.666% and 0.01%,respectively,in a hybrid pulse test,while 1.933% and 0.062%,respectively,in a transient power test.The on-line parameter calibration method thereby can ensure that the model possesses an acceptable robustness to varied battery loading profiles.