为解决传统滤波最小均方差(filtered-x least mean square,FxLMS)算法在收敛速度和稳定性之间存在的矛盾,以及次级通道模型不确定性对控制收敛性能的影响,将反馈FxLMS算法和混合灵敏度鲁棒控制器相结合,提出了一种反馈FxLMS-鲁棒混合控...为解决传统滤波最小均方差(filtered-x least mean square,FxLMS)算法在收敛速度和稳定性之间存在的矛盾,以及次级通道模型不确定性对控制收敛性能的影响,将反馈FxLMS算法和混合灵敏度鲁棒控制器相结合,提出了一种反馈FxLMS-鲁棒混合控制算法,并在工程应用中常见的主动撑杆隔振平台上对该混合算法的振动控制性能进行仿真分析和试验验证。变载荷激励及控制通道变化仿真和试验结果均表明,不同激励下各个阶段的加速度响应衰减均超过80%,且与传统的FxLMS算法相比,所提出的混合控制算法具有更快的收敛速度和更强的鲁棒性。展开更多
基于滤波X最小均方差(filtered-X least mean square,简称FXLMS)控制方法实施振动主动控制的基本结构,提出了参考信号自提取的控制器结构和算法,直接利用系统误差信号获得对原激扰信号的一个估计,并用估计值作为自适应滤波器的参考信号...基于滤波X最小均方差(filtered-X least mean square,简称FXLMS)控制方法实施振动主动控制的基本结构,提出了参考信号自提取的控制器结构和算法,直接利用系统误差信号获得对原激扰信号的一个估计,并用估计值作为自适应滤波器的参考信号,以实现与外激扰信号的相关性。在针对控制算法进行Matlab仿真分析的基础上,构建了压电机敏柔性板试验模型和测控平台,并进行了算法验证。试验结果表明,该控制算法不仅实现了参考信号从振动结构中直接提取,并具有较快的收敛速度和良好的控制效果。展开更多
滤波x最小均方差(filtered-x least mean square,简称Fx-LMS)算法作为振动控制领域常用的自适应控制算法,其固定步长因子不能同时满足收敛速度和稳态误差的双重要求。为了改善Fx-LMS算法实施效果,提出一种基于反余切函数的滤波x变步长...滤波x最小均方差(filtered-x least mean square,简称Fx-LMS)算法作为振动控制领域常用的自适应控制算法,其固定步长因子不能同时满足收敛速度和稳态误差的双重要求。为了改善Fx-LMS算法实施效果,提出一种基于反余切函数的滤波x变步长最小均方差(filtered x variable step size least mean square,简称Fx-VSSLMS)算法。首先,归纳了7种常规VSSLMS算法的步长更新公式,并按照其迭代特点予以性能分析与分类对比;其次,以压电柔性悬臂梁振动主动控制为算法验证目标,采用多体动力学软件Adams和Simulink进行联合仿真,表明所提的Fx-VSSLMS算法在振动控制中的有效性;最后,通过分析对比多种Fx-VSSLMS算法在不同噪声环境下的抑振效果,验证了所提出控制算法对噪声干扰的良好鲁棒性。展开更多
New sigma point filtering algorithms, including the unscented Kalman filter (UKF) and the divided difference filter (DDF), are designed to solve the nonlinear filtering problem under the condition of correlated no...New sigma point filtering algorithms, including the unscented Kalman filter (UKF) and the divided difference filter (DDF), are designed to solve the nonlinear filtering problem under the condition of correlated noises. Based on the minimum mean square error estimation theory, the nonlinear optimal predictive and correction recursive formulas under the hypothesis that the input noise is correlated with the measurement noise are derived and can be described in a unified framework. Then, UKF and DDF with correlated noises are proposed on the basis of approximation of the posterior mean and covariance in the unified framework by using unscented transformation and second order Stirling's interpolation. The proposed UKF and DDF with correlated noises break through the limitation that input noise and measurement noise must be assumed to be uneorrelated in standard UKF and DDF. Two simulation examples show the effectiveness and feasibility of new algorithms for dealing with nonlinear filtering issue with correlated noises.展开更多
文摘为解决传统滤波最小均方差(filtered-x least mean square,FxLMS)算法在收敛速度和稳定性之间存在的矛盾,以及次级通道模型不确定性对控制收敛性能的影响,将反馈FxLMS算法和混合灵敏度鲁棒控制器相结合,提出了一种反馈FxLMS-鲁棒混合控制算法,并在工程应用中常见的主动撑杆隔振平台上对该混合算法的振动控制性能进行仿真分析和试验验证。变载荷激励及控制通道变化仿真和试验结果均表明,不同激励下各个阶段的加速度响应衰减均超过80%,且与传统的FxLMS算法相比,所提出的混合控制算法具有更快的收敛速度和更强的鲁棒性。
文摘基于滤波X最小均方差(filtered-X least mean square,简称FXLMS)控制方法实施振动主动控制的基本结构,提出了参考信号自提取的控制器结构和算法,直接利用系统误差信号获得对原激扰信号的一个估计,并用估计值作为自适应滤波器的参考信号,以实现与外激扰信号的相关性。在针对控制算法进行Matlab仿真分析的基础上,构建了压电机敏柔性板试验模型和测控平台,并进行了算法验证。试验结果表明,该控制算法不仅实现了参考信号从振动结构中直接提取,并具有较快的收敛速度和良好的控制效果。
文摘滤波x最小均方差(filtered-x least mean square,简称Fx-LMS)算法作为振动控制领域常用的自适应控制算法,其固定步长因子不能同时满足收敛速度和稳态误差的双重要求。为了改善Fx-LMS算法实施效果,提出一种基于反余切函数的滤波x变步长最小均方差(filtered x variable step size least mean square,简称Fx-VSSLMS)算法。首先,归纳了7种常规VSSLMS算法的步长更新公式,并按照其迭代特点予以性能分析与分类对比;其次,以压电柔性悬臂梁振动主动控制为算法验证目标,采用多体动力学软件Adams和Simulink进行联合仿真,表明所提的Fx-VSSLMS算法在振动控制中的有效性;最后,通过分析对比多种Fx-VSSLMS算法在不同噪声环境下的抑振效果,验证了所提出控制算法对噪声干扰的良好鲁棒性。
基金Projects(61135001, 61075029, 61074155) supported by the National Natural Science Foundation of ChinaProject(20110491690) supported by the Postdocteral Science Foundation of China
文摘New sigma point filtering algorithms, including the unscented Kalman filter (UKF) and the divided difference filter (DDF), are designed to solve the nonlinear filtering problem under the condition of correlated noises. Based on the minimum mean square error estimation theory, the nonlinear optimal predictive and correction recursive formulas under the hypothesis that the input noise is correlated with the measurement noise are derived and can be described in a unified framework. Then, UKF and DDF with correlated noises are proposed on the basis of approximation of the posterior mean and covariance in the unified framework by using unscented transformation and second order Stirling's interpolation. The proposed UKF and DDF with correlated noises break through the limitation that input noise and measurement noise must be assumed to be uneorrelated in standard UKF and DDF. Two simulation examples show the effectiveness and feasibility of new algorithms for dealing with nonlinear filtering issue with correlated noises.