结构动载荷识别反问题是典型的病态问题,需要应用正则方法克服其病态特性而获得稳定的解。与直接正则化算法Tikhonov方法相比,共轭梯度最小二乘(Conjugate Gradient Least Squares,CGLS)迭代算法在载荷识别反问题的正则化过程有无须对...结构动载荷识别反问题是典型的病态问题,需要应用正则方法克服其病态特性而获得稳定的解。与直接正则化算法Tikhonov方法相比,共轭梯度最小二乘(Conjugate Gradient Least Squares,CGLS)迭代算法在载荷识别反问题的正则化过程有无须对传递矩阵求逆、无须明确正则化参数的优点。提出共轭梯度最小二乘迭代正则化算法和启发式迭代收敛终止准则,用于三自由度仿真模型和壳结构试验模型的冲击载荷识别,并与经典的Landweber迭代正则化算法和直接正则化算法Tikhonov方法比较。仿真和实验结果表明:CGLS迭代正则化算法在识别精度、收敛速度、计算效率和抗噪性方面有明显优势。展开更多
l_(0)梯度最小化图像平滑算法可在保持边缘的同时滤除纹理和细节,但该算法使用图像梯度判决被平滑成分时会出现包含较小图像梯度(弱边缘)的区域会被平滑,而包含较大图像梯度(强纹理)的区域被保留的现象.为克服此缺陷,提出一种基于图像块...l_(0)梯度最小化图像平滑算法可在保持边缘的同时滤除纹理和细节,但该算法使用图像梯度判决被平滑成分时会出现包含较小图像梯度(弱边缘)的区域会被平滑,而包含较大图像梯度(强纹理)的区域被保留的现象.为克服此缺陷,提出一种基于图像块l_(0)梯度最小化算法(image-patch based l_(0)gradient minimization algorithm,简称IP-l_(0)算法)的图像平滑算法,通过对输入图像中的图像块而非整幅图像进行平滑,动态改变图像块目标函数中的权重参数,令主要包含强纹理的图像块以较大的力度进行平滑,而主要包含弱边缘的图像块以较小的力度进行平滑,再整合平滑后的图像块得到整个边缘保持平滑图像.对IP-l_(0)算法、原始的l_(0)梯度最小化算法、基于局部拉普拉斯滤波器的算法、基于相对全变差算法、基于树滤波的算法,以及2种基于深度学习的边缘保持算法进行仿真实验,结果表明,使用IP-l_(0)算法滤波后的图像能在保持较弱的边缘的同时平滑强纹理.展开更多
文摘结构动载荷识别反问题是典型的病态问题,需要应用正则方法克服其病态特性而获得稳定的解。与直接正则化算法Tikhonov方法相比,共轭梯度最小二乘(Conjugate Gradient Least Squares,CGLS)迭代算法在载荷识别反问题的正则化过程有无须对传递矩阵求逆、无须明确正则化参数的优点。提出共轭梯度最小二乘迭代正则化算法和启发式迭代收敛终止准则,用于三自由度仿真模型和壳结构试验模型的冲击载荷识别,并与经典的Landweber迭代正则化算法和直接正则化算法Tikhonov方法比较。仿真和实验结果表明:CGLS迭代正则化算法在识别精度、收敛速度、计算效率和抗噪性方面有明显优势。
文摘针对传统有限元法求解声学问题由于刚度矩阵过硬导致较大的色散误差,以及在较高波数和网格扭曲时计算精度过低甚至错误的问题,采用移动最小二乘权函数对传统有限元法的声压梯度进行加权重构,推导了梯度移动最小二乘加权(Gradient weighted by moving least-squares,GW-MLS)的二维声学计算公式。对声压梯度的加权重构使得GW-MLS模型的刚度相对于FEM模型得以软化,刚度更接近真实模型刚度。采用与有限元法相同的方式构造质量矩阵和边界积分矢量,保证质量矩阵和边界条件的正确施加和积分精度。通过二维管道声腔模型和二维车内声腔模型算例对所提出的算法进行验证,数值分析结果表明,GW-MLS有效地减少了色散误差的影响,提高了计算精度,尤其是对较高波数和网格扭曲时表现出良好的适应性。
文摘l_(0)梯度最小化图像平滑算法可在保持边缘的同时滤除纹理和细节,但该算法使用图像梯度判决被平滑成分时会出现包含较小图像梯度(弱边缘)的区域会被平滑,而包含较大图像梯度(强纹理)的区域被保留的现象.为克服此缺陷,提出一种基于图像块l_(0)梯度最小化算法(image-patch based l_(0)gradient minimization algorithm,简称IP-l_(0)算法)的图像平滑算法,通过对输入图像中的图像块而非整幅图像进行平滑,动态改变图像块目标函数中的权重参数,令主要包含强纹理的图像块以较大的力度进行平滑,而主要包含弱边缘的图像块以较小的力度进行平滑,再整合平滑后的图像块得到整个边缘保持平滑图像.对IP-l_(0)算法、原始的l_(0)梯度最小化算法、基于局部拉普拉斯滤波器的算法、基于相对全变差算法、基于树滤波的算法,以及2种基于深度学习的边缘保持算法进行仿真实验,结果表明,使用IP-l_(0)算法滤波后的图像能在保持较弱的边缘的同时平滑强纹理.