期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
传统矩阵变换器最小相位误差空间矢量过调制策略 被引量:6
1
作者 高文科 阎彦 史婷娜 《电工技术学报》 EI CSCD 北大核心 2019年第2期316-325,共10页
对传统矩阵变换器的电压传输比特性进行理论研究,推导瞬时电压传输比与输出/输入频率比、输出电压初始相位和输入功率因数角之间的函数关系,分析瞬时电压传输比的变化规律。通过对输出线电压进行二重傅里叶变换,得到传统矩阵变换器最小... 对传统矩阵变换器的电压传输比特性进行理论研究,推导瞬时电压传输比与输出/输入频率比、输出电压初始相位和输入功率因数角之间的函数关系,分析瞬时电压传输比的变化规律。通过对输出线电压进行二重傅里叶变换,得到传统矩阵变换器最小相位误差过调制下的电压传输比上限值。在此基础上,提出一种基于线性加权原理的最小相位误差过调制策略。仿真与实验结果验证,所提策略可使传统矩阵变换器的基波电压传输比达到0.953,同时保证调制输出电压基波幅值相对参考电压幅值的误差小、输出电流谐波含量低。 展开更多
关键词 矩阵变换器 电压传输比 最小相位误差过调制 线性加权
下载PDF
集成运放的最小相位误差组合应用技术
2
作者 蒋韬 王新春 《楚雄师范学院学报》 2009年第3期51-56,108,共7页
针对减小集成运放相位误差的传统方法,指出传统方法的局限性。引入单片集成匹配双运放、三运放组合的思想,形成有源反馈补偿的最小相移方法,分别从电路设计、数学推导、实际参数比较及计算,详细讨论集成运放的最小相位误差组合应用技术... 针对减小集成运放相位误差的传统方法,指出传统方法的局限性。引入单片集成匹配双运放、三运放组合的思想,形成有源反馈补偿的最小相移方法,分别从电路设计、数学推导、实际参数比较及计算,详细讨论集成运放的最小相位误差组合应用技术,在指定相位误差下,可有效扩展频带。这对相位误差有着严格要求的电路与系统有着重要意义。 展开更多
关键词 最小相位误差 匹配二运放 匹配三运放 有源反馈补偿
下载PDF
Extracting outer function part from Hardy space function 被引量:3
3
作者 TAN LiHui QIAN Tao 《Science China Mathematics》 SCIE CSCD 2017年第11期2321-2336,共16页
Any analytic signal fa(e^(it)) can be written as a product of its minimum-phase signal part(the outer function part) and its all-phase signal part(the inner function part). Due to the importance of such decomposition,... Any analytic signal fa(e^(it)) can be written as a product of its minimum-phase signal part(the outer function part) and its all-phase signal part(the inner function part). Due to the importance of such decomposition, Kumarasan and Rao(1999), implementing the idea of the Szeg?o limit theorem(see below),proposed an algorithm to obtain approximations of the minimum-phase signal of a polynomial analytic signal fa(e^(it)) = e^(iN0t)M∑k=0a_k^(eikt),(0.1)where a_0≠ 0, a_M≠ 0. Their method involves minimizing the energy E(f_a, h_1, h_2,..., h_H) =1/(2π)∫_0^(2π)|1+H∑k=1h_k^(eikt)|~2|fa(e^(it))|~2dt(0.2) with the undetermined complex numbers hk's by the least mean square error method. In the limiting procedure H →∞, one obtains approximate solutions of the minimum-phase signal. What is achieved in the present paper is two-fold. On one hand, we rigorously prove that, if fa(e^(it)) is a polynomial analytic signal as given in(0.1),then for any integer H≥M, and with |fa(e^(it))|~2 in the integrand part of(0.2) being replaced with 1/|fa(e^(it))|~2,the exact solution of the minimum-phase signal of fa(e^(it)) can be extracted out. On the other hand, we show that the Fourier system e^(ikt) used in the above process may be replaced with the Takenaka-Malmquist(TM) system, r_k(e^(it)) :=((1-|α_k|~2e^(it))/(1-α_ke^(it))^(1/2)∏_(j=1)^(k-1)(e^(it)-α_j/(1-α_je^(it))^(1/2), k = 1, 2,..., r_0(e^(it)) = 1, i.e., the least mean square error method based on the TM system can also be used to extract out approximate solutions of minimum-phase signals for any functions f_a in the Hardy space. The advantage of the TM system method is that the parameters α_1,..., α_n,...determining the system can be adaptively selected in order to increase computational efficiency. In particular,adopting the n-best rational(Blaschke form) approximation selection for the n-tuple {α_1,..., α_n}, n≥N, where N is the degree of the given rational analytic signal, the minimum-phase part of a rational analytic signal can be accurately and efficiently extracted out. 展开更多
关键词 complex Hardy space analytic signal Nevanlinna decomposition inner and outer functions minimum-phase signal all-phase signal Takenaka-Malmquist system
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部