A method for integer ambiguity resolution in the global positioning system (GPS) multi-reference station network real time kinematic (RTK) is proposed. First, the barycenter of the triangle of reference stations f...A method for integer ambiguity resolution in the global positioning system (GPS) multi-reference station network real time kinematic (RTK) is proposed. First, the barycenter of the triangle of reference stations for ambiguity resolution is taken as a reference point. The satellite which has the largest elevation angle with the reference point is selected as a reference satellite. The parameters for constructing the weight matrix of carrier phase observation and the criteria for checking the correctness of integer ambiguity resolution of a network are obtained. Then, the wide ambiguity is calculated by a linear combination method of dualband observation. And the LI ambiguity is obtained by a nonionosphere combination method. The Kalman filter is introduced to refine the floating-point solution of ambiguity and estimate the real-time tropospheric delay. Finally, the cofactor matrix of ambiguity is de-correlated by Z-transformation to reduce the searching space of the integer ambiguity solution and improve the efficiency of the least-squares ambiguity decorrelation adjustment (LAMBDA) algorithm. The experimental results show that this method can reliably obtain the integer ambiguity solution among multi-reference stations with 40 epochs.展开更多
基金The National Key Technology R&D Program of Chinaduring the11th Five-Year Plan Period (No2008BAJ11B05)
文摘A method for integer ambiguity resolution in the global positioning system (GPS) multi-reference station network real time kinematic (RTK) is proposed. First, the barycenter of the triangle of reference stations for ambiguity resolution is taken as a reference point. The satellite which has the largest elevation angle with the reference point is selected as a reference satellite. The parameters for constructing the weight matrix of carrier phase observation and the criteria for checking the correctness of integer ambiguity resolution of a network are obtained. Then, the wide ambiguity is calculated by a linear combination method of dualband observation. And the LI ambiguity is obtained by a nonionosphere combination method. The Kalman filter is introduced to refine the floating-point solution of ambiguity and estimate the real-time tropospheric delay. Finally, the cofactor matrix of ambiguity is de-correlated by Z-transformation to reduce the searching space of the integer ambiguity solution and improve the efficiency of the least-squares ambiguity decorrelation adjustment (LAMBDA) algorithm. The experimental results show that this method can reliably obtain the integer ambiguity solution among multi-reference stations with 40 epochs.