A chip-level space-time equalization receiver scheme is proposed for multiple-input multiple-output high-speed downlink packet access (MIMO HSDPA) systems to jointly combat the co-channel interference and the inter-co...A chip-level space-time equalization receiver scheme is proposed for multiple-input multiple-output high-speed downlink packet access (MIMO HSDPA) systems to jointly combat the co-channel interference and the inter-code interference. A fractional sample equalizer is also derived to further improve the performance of the receiver. Performance analysis and the calculation of the output signal to interference ratio (SINR) at each receiver antenna are presented to help direct the design of equalization weight in a more optimal manner. System simulations demonstrate the significant performance gain over conventional Rake receiver and high potential of MIMO HSDPA for high-data-rate packet transmission.展开更多
Abstract For relatively prime positive integers u0 and r, and for 0 〈 k ≤ n, define uk := u0 + kr. Let Ln := 1cm(u0,u1,... ,un) and let a,l≥2 be any integers. In this paper, the authors show that, for integers...Abstract For relatively prime positive integers u0 and r, and for 0 〈 k ≤ n, define uk := u0 + kr. Let Ln := 1cm(u0,u1,... ,un) and let a,l≥2 be any integers. In this paper, the authors show that, for integers α≥ a, r ≥max(a,l - 1) and n ≥lατ, the following inequality holds Ln≥u0r^(l-1)α+a-l(r+1)^n.Particularly, letting l = 3 yields an improvement on the best previous lower bound on Ln obtained by Hong and Kominers in 2010.展开更多
文摘A chip-level space-time equalization receiver scheme is proposed for multiple-input multiple-output high-speed downlink packet access (MIMO HSDPA) systems to jointly combat the co-channel interference and the inter-code interference. A fractional sample equalizer is also derived to further improve the performance of the receiver. Performance analysis and the calculation of the output signal to interference ratio (SINR) at each receiver antenna are presented to help direct the design of equalization weight in a more optimal manner. System simulations demonstrate the significant performance gain over conventional Rake receiver and high potential of MIMO HSDPA for high-data-rate packet transmission.
基金supported by the National Natural Science Foundation of China(No.10971145)the Ph.D.Programs Foundation of Ministry of Education of China(No.20100181110073)the Science&Technology Program of Sichuan Province(No.2013JY0125)
文摘Abstract For relatively prime positive integers u0 and r, and for 0 〈 k ≤ n, define uk := u0 + kr. Let Ln := 1cm(u0,u1,... ,un) and let a,l≥2 be any integers. In this paper, the authors show that, for integers α≥ a, r ≥max(a,l - 1) and n ≥lατ, the following inequality holds Ln≥u0r^(l-1)α+a-l(r+1)^n.Particularly, letting l = 3 yields an improvement on the best previous lower bound on Ln obtained by Hong and Kominers in 2010.