为了进一步提高在α稳定分布噪声背景下非线性自适应滤波算法的收敛速度,本文提出了一种新的基于p范数的核最小对数绝对差自适应滤波算法(kernel least logarithm absolute difference algorithm based on p-norm,P-KLLAD).该算法结合...为了进一步提高在α稳定分布噪声背景下非线性自适应滤波算法的收敛速度,本文提出了一种新的基于p范数的核最小对数绝对差自适应滤波算法(kernel least logarithm absolute difference algorithm based on p-norm,P-KLLAD).该算法结合核最小对数绝对差算法和p范数,一方面利用最小对数绝对差准则保证了算法在α稳定分布噪声环境下良好的鲁棒性,另一方面在误差的绝对值上添加p范数,通过p范数和一个正常数a来控制算法的陡峭程度,从而提高该算法的收敛速度.在非线性系统辨识和Mackey-Glass混沌时间序列预测的仿真结果表明,本文算法在保证鲁棒性能的同时提高了收敛速度,并且在收敛速度和鲁棒性方面优于核最小均方误差算法、核分式低次幂算法、核最小对数绝对差算法和核最小平均p范数算法.展开更多
This paper develops goal programming algorithm to solve a type of least absolute value (LAV) problem. Firstly, we simplify the simplex algorithm by proving the existence of solutions of the problem. Then, we present a...This paper develops goal programming algorithm to solve a type of least absolute value (LAV) problem. Firstly, we simplify the simplex algorithm by proving the existence of solutions of the problem. Then, we present a goal programming algorithm on the basis of the original techniques. Theoretical analysis and numerical results indicate that the new method contains a lower number of deviation variables and consumes less computational time as compared to current LAV methods.展开更多
文摘为了进一步提高在α稳定分布噪声背景下非线性自适应滤波算法的收敛速度,本文提出了一种新的基于p范数的核最小对数绝对差自适应滤波算法(kernel least logarithm absolute difference algorithm based on p-norm,P-KLLAD).该算法结合核最小对数绝对差算法和p范数,一方面利用最小对数绝对差准则保证了算法在α稳定分布噪声环境下良好的鲁棒性,另一方面在误差的绝对值上添加p范数,通过p范数和一个正常数a来控制算法的陡峭程度,从而提高该算法的收敛速度.在非线性系统辨识和Mackey-Glass混沌时间序列预测的仿真结果表明,本文算法在保证鲁棒性能的同时提高了收敛速度,并且在收敛速度和鲁棒性方面优于核最小均方误差算法、核分式低次幂算法、核最小对数绝对差算法和核最小平均p范数算法.
基金This research is supported by the National Natural Science Foundation of China (70301014).
文摘This paper develops goal programming algorithm to solve a type of least absolute value (LAV) problem. Firstly, we simplify the simplex algorithm by proving the existence of solutions of the problem. Then, we present a goal programming algorithm on the basis of the original techniques. Theoretical analysis and numerical results indicate that the new method contains a lower number of deviation variables and consumes less computational time as compared to current LAV methods.