在匹配跟踪算法中,模板更新策略是跟踪成败的关键。从复杂背景下的目标跟踪出发,指出固定模板和逐帧模板更新的不足之处,介绍几种性能较好的模板更新策略,并在此基础上提出改进的模板更新方法。同时,为了更好地克服背景光照带来的影响,...在匹配跟踪算法中,模板更新策略是跟踪成败的关键。从复杂背景下的目标跟踪出发,指出固定模板和逐帧模板更新的不足之处,介绍几种性能较好的模板更新策略,并在此基础上提出改进的模板更新方法。同时,为了更好地克服背景光照带来的影响,对普通最小平均绝对差值函数MAD(M in imum Absolute D ifference)方法进行了改进。仿真实验结果表明,该算法能克服诸如烟尘干扰、背景光照变化、地貌起伏等不利因素,能在复杂背景中稳定和精确地进行目标跟踪。展开更多
This paper develops goal programming algorithm to solve a type of least absolute value (LAV) problem. Firstly, we simplify the simplex algorithm by proving the existence of solutions of the problem. Then, we present a...This paper develops goal programming algorithm to solve a type of least absolute value (LAV) problem. Firstly, we simplify the simplex algorithm by proving the existence of solutions of the problem. Then, we present a goal programming algorithm on the basis of the original techniques. Theoretical analysis and numerical results indicate that the new method contains a lower number of deviation variables and consumes less computational time as compared to current LAV methods.展开更多
文摘在匹配跟踪算法中,模板更新策略是跟踪成败的关键。从复杂背景下的目标跟踪出发,指出固定模板和逐帧模板更新的不足之处,介绍几种性能较好的模板更新策略,并在此基础上提出改进的模板更新方法。同时,为了更好地克服背景光照带来的影响,对普通最小平均绝对差值函数MAD(M in imum Absolute D ifference)方法进行了改进。仿真实验结果表明,该算法能克服诸如烟尘干扰、背景光照变化、地貌起伏等不利因素,能在复杂背景中稳定和精确地进行目标跟踪。
基金This research is supported by the National Natural Science Foundation of China (70301014).
文摘This paper develops goal programming algorithm to solve a type of least absolute value (LAV) problem. Firstly, we simplify the simplex algorithm by proving the existence of solutions of the problem. Then, we present a goal programming algorithm on the basis of the original techniques. Theoretical analysis and numerical results indicate that the new method contains a lower number of deviation variables and consumes less computational time as compared to current LAV methods.