期刊文献+
共找到55篇文章
< 1 2 3 >
每页显示 20 50 100
最小绝对收缩和选择算子回归筛选急性缺血性脑卒中溶栓患者症状性脑内出血预测因素分析
1
作者 朱金洲 皮强峰 +1 位作者 舒志刚 梅炳银 《心脑血管病防治》 2023年第10期20-24,共5页
目的探讨基于最小绝对收缩和选择算子(LASSO)回归筛选急性缺血性脑卒中溶栓患者症状性脑内出血(sICH)发生的预测因素。方法选取2019年6月至2022年6月于鄂州市中心医院收治的428例急性缺血性脑卒中患者作为研究对象,静脉溶栓后24 h采用C... 目的探讨基于最小绝对收缩和选择算子(LASSO)回归筛选急性缺血性脑卒中溶栓患者症状性脑内出血(sICH)发生的预测因素。方法选取2019年6月至2022年6月于鄂州市中心医院收治的428例急性缺血性脑卒中患者作为研究对象,静脉溶栓后24 h采用CT观察脑内出血情况,根据有无sICH分为sICH组36例和无sICH组392例。记录两组人口社会学资料、溶栓前实验室检查资料、影像学相关资料,采用LASSO回归分析筛选变量初步筛选重要预测因素,将非零回归系数的变量纳入多因素Logistic回归分析,确定影响急性缺血性脑卒中溶栓后发生sICH的独立预测因素。结果36例(8.41%)患者在溶栓后24 h内出现sICH归为sICH组,其余392例(91.59%)未出现sICH归为无sICH组。两组患者发病至溶栓时间、糖尿病、心房颤动、入院时美国国立卫生研究院卒中量表(NIHSS)评分、入院时血糖、C反应蛋白、CT显示大动脉高密度征象比较差异有统计学意义(t/χ^(2)=2.163、3.911、4.092、3.087、3.156、3.937、8.553,均P<0.05);LASSO回归算法共筛选出入院NIHSS评分、入院时血糖、C反应蛋白、大动脉高密度征象4个具有非零系数的显著相关指标;进一步多因素Logistic回归分析显示:入院NIHSS评分、入院时血糖、C反应蛋白、大动脉高密度征象为急性缺血性脑卒中溶栓后sICH的危险因素[OR(95%CI)=1.123(1.029~1.226)、1.391(1.086~1.781)、1.901(1.362~2.652)、3.112(1.364~7.104),均P<0.05];ROC曲线显示,基于LASSO-Logistic构建的模型预测急性缺血性脑卒中溶栓后sICH发生的AUC为0.802(95%CI=0.722~0.882),特异度为61.20%,敏感度为88.90%。结论基于LASSO回归筛选出的入院NIHSS评分、入院时血糖水平、C反应蛋白、大动脉高密度征象为急性缺血性脑卒中溶栓后sICH的预测因素。 展开更多
关键词 急性缺血性脑卒中 症状性脑内出血 溶栓 最小绝对收缩和选择算子回归
下载PDF
基于最小绝对收缩与选择算子模型稀疏恢复的多目标检测 被引量:1
2
作者 洪刘根 郑霖 杨超 《计算机应用》 CSCD 北大核心 2017年第8期2184-2188,共5页
针对地面多径环境下运动目标检测,使用最小绝对收缩与选择算子(LASSO)算法在参数估计时会出现伪目标的问题,提出一种基于LASSO模型框架的设计矩阵降维构造方法。首先,信号的多径传播能够带来目标检测的空间分集,信号在不同的多径上有不... 针对地面多径环境下运动目标检测,使用最小绝对收缩与选择算子(LASSO)算法在参数估计时会出现伪目标的问题,提出一种基于LASSO模型框架的设计矩阵降维构造方法。首先,信号的多径传播能够带来目标检测的空间分集,信号在不同的多径上有不同的多普勒频移;此外,使用宽带正交频分复用(OFDM)信号能够带来频率分集。由于空间分集和频率分集的引入造成目标的稀疏特性。利用多径的稀疏性和对环境的先验知识,去估计稀疏向量。仿真结果表明,在一定信噪比(SNR,-5 d B)下,基于设计矩阵降维构造方法的改进的LASSO算法比基追踪算法(BP)、DS(Dantzig Selector)、LASSO等传统算法的检测性能有明显提高;在一定虚警率(0.1)条件下,改进的LASSO算法比原LASSO算法检测概率提高了30%。所提算法能够有效去除伪目标,提高雷达目标检测概率。 展开更多
关键词 多径效应 稀疏向量恢复 多目标检测 最小绝对收缩选择算子 正交频分复用信号雷达
下载PDF
删失回归模型中一个LASSO型变量选择和估计方法(英文) 被引量:8
3
作者 王占锋 吴耀华 赵林城 《应用概率统计》 CSCD 北大核心 2010年第1期66-80,共15页
删失回归模型是一种很重要的模型,它在计量经济学中有着广泛的应用.然而,它的变量选择问题在现今的参考文献中研究的比较少.本文提出了一个LASSO型变量选择和估计方法,称之为多样化惩罚L1限制方法,简称为DPLC.另外,我们给出了非0回归系... 删失回归模型是一种很重要的模型,它在计量经济学中有着广泛的应用.然而,它的变量选择问题在现今的参考文献中研究的比较少.本文提出了一个LASSO型变量选择和估计方法,称之为多样化惩罚L1限制方法,简称为DPLC.另外,我们给出了非0回归系数估计的大样本渐近性质.最后,大量的模拟研究表明了DPLC方法和一般的最优子集选择方法在变量选择和估计方面有着相同的能力. 展开更多
关键词 删失回归模型 最小绝对偏差 变量选择 lasso
下载PDF
基于LASSO算法的光谱变量选择方法研究 被引量:6
4
作者 王恺怡 杨盛 +1 位作者 郭彩云 卞希慧 《分析测试学报》 CAS CSCD 北大核心 2022年第3期398-402,408,共6页
光谱分析技术由于具有简单、快速、无损等优势,在复杂体系的定性和定量分析中得到了广泛应用。然而光谱中往往包含成百上千的波长点,有些波长点与研究的目标性质并不相关,加大了计算量并降低了模型的预测准确度。因此,在建立模型前需要... 光谱分析技术由于具有简单、快速、无损等优势,在复杂体系的定性和定量分析中得到了广泛应用。然而光谱中往往包含成百上千的波长点,有些波长点与研究的目标性质并不相关,加大了计算量并降低了模型的预测准确度。因此,在建立模型前需要进行变量选择。最小绝对收缩与选择算子(LASSO)可将回归系数收缩为0,进而达到变量选择的目的。该研究将LASSO用于三元调和油样品近红外光谱和生物样品拉曼光谱的变量选择,基于偏最小二乘(PLS)和多元线性回归(MLR)模型,分别对香油和肌氨酸的含量进行定量分析,并与无信息变量消除-PLS(UVE-PLS)、蒙特卡罗结合UVE-PLS(MCUVE-PLS)和随机检验-PLS(RT-PLS)3种变量选择方法进行比较。结果表明,基于LASSO的变量选择方法保留的变量数最少,运算速度最快。对三元调和油样品,LASSO-PLS预测的准确度最高;对生物样品,LASSO-MLR预测的准确度最高。因此,基于LASSO的变量选择算法有望在光谱分析领域中得到良好应用。 展开更多
关键词 多元校正 变量选择 最小绝对收缩选择算子(lasso) 光谱分析
下载PDF
高尿酸血症与慢性肺源性心脏病的相关性研究:基于LASSO回归与倾向性评分匹配法
5
作者 祁海燕 王捷 +1 位作者 罗玉玺 武云 《中国全科医学》 CAS 北大核心 2024年第24期2954-2960,2968,共8页
背景近年来众多研究表明高尿酸血症(HUA)是某些疾病的影响因素,然而HUA是否为慢性肺源性心脏病(CPHD)的影响因素仍需进一步研究。目的探讨HUA与CPHD的相关性,旨在为CPHD患者血尿酸(SUA)水平的管理提供理论依据。方法纳入2019—2023年新... 背景近年来众多研究表明高尿酸血症(HUA)是某些疾病的影响因素,然而HUA是否为慢性肺源性心脏病(CPHD)的影响因素仍需进一步研究。目的探讨HUA与CPHD的相关性,旨在为CPHD患者血尿酸(SUA)水平的管理提供理论依据。方法纳入2019—2023年新疆医科大学第一附属医院收治的1171例慢性阻塞性肺疾病(COPD)患者为研究对象,根据其是否患有CPHD分为CPHD组(470例)和COPD组(701例)。收集患者一般资料和实验室检查及超声心动图检查结果。采用LASSO回归法对变量进行筛选,采用倾向性评分匹配法(PSM)排除混杂因素影响。采用多因素Logistic回归分析探究COPD患者合并CPHD的影响因素。结果CPHD组女性、汉族、吸烟、饮酒、特发性肺纤维化、慢性支气管炎、支气管哮喘比例、淋巴细胞百分比、左心室舒张末期内径、左心室收缩末期内径、心输出量、左心室射血分数低于COPD组,心功能3~4级、HUA、肺栓塞、先天性心脏病比例、红细胞计数、中性粒细胞百分比、SUA、血尿素氮、D-二聚体、N末端-B型利钠肽前体、右心房内径、右心室内径、左心房内径、右心室流出道内径、肺动脉内径高于COPD组,差异有统计学意义(P<0.05)。LASSO回归筛选出变量后进行PSM,最终得到COPD组469例、CPHD组469例。匹配后CPHD组心功能3~4级、HUA占比、右心房内径、右心室内径、右心室流出道内径、肺动脉内径大于COPD组,支气管哮喘、淋巴细胞百分比低于COPD组,差异有统计学意义(P<0.05)。多因素Logistic回归分析结果显示,HUA升高、心功能3~4级、右心房内径、右心室内径、肺动脉内径增加是COPD患者合并CPHD的危险因素(P<0.05),患有支气管哮喘、左心室舒张末期内径增加为COPD患者合并CPHD的保护因素(P<0.05)。将SUA水平按四分位数分层,多因素Logistic回归分析结果显示,与Q1(SUA<237.31μmol/L)比较,Q4(SUA>381.29μmol/L)患者患有CPHD的风险增加1.421倍。结论HUA是CPHD疾病发生、发展的影响因素,积极控制SUA水平有助于预防CPHD的发生、发展。 展开更多
关键词 肺心病 高尿酸血症 肺疾病 慢性阻塞性 病例对照研究 最小绝对收缩和选择算法 倾向性评分
下载PDF
基于LASSO回归探讨多种生物标志物预测急性冠脉综合征病人PCI术后造影剂肾病的价值
6
作者 杨珊珊 潘宇翔 +1 位作者 郑婉 王政 《中西医结合心脑血管病杂志》 2024年第12期2246-2251,共6页
目的:基于最小绝对收缩与选择算法(LASSO)回归探讨多种生物标志物预测急性冠脉综合征病人经皮冠状动脉介入治疗(PCI)术后造影剂肾病的价值。方法:选取2020年1月-2022年6月在海南医学院第一附属医院就诊的119例急性冠脉综合征病人作为研... 目的:基于最小绝对收缩与选择算法(LASSO)回归探讨多种生物标志物预测急性冠脉综合征病人经皮冠状动脉介入治疗(PCI)术后造影剂肾病的价值。方法:选取2020年1月-2022年6月在海南医学院第一附属医院就诊的119例急性冠脉综合征病人作为研究对象,记录病人一般情况、血液生化指标、炎性因子、生物标志物及PCI术后3 d造影剂肾病发生情况,以病人PCI术后3 d是否发生造影剂肾病为因变量,运用10折交叉验证LASSO回归进行特征性变量筛选,以特征性变量作为自变量代入多因素Logistic回归模型获得急性冠脉综合征病人PCI术后发生造影剂肾病的独立预测因素,重点分析生物标志物与病人PCI术后发生造影剂肾病的关系,并基于独立预测因素构建联合预测模型和列线图模型,绘制校准曲线以验证列线图模型的预测效能。结果:10折交叉验证LASSO回归筛选出最具泛化能力的4个特征性变量糖尿病、尿肾损伤分子-1(KIM-1)、尿中性粒细胞明胶酶相关载脂蛋白(NGAL)以及尿胱抑素C(CysC),其对应的LASSO回归系数分别为0.436,0.624,0.916及2.745,多因素Logistic回归分析调整和校正混杂因素后,糖尿病、尿KIM-1、尿NGAL以及尿CysC为急性冠脉综合征病人PCI术后发生造影剂肾病的独立预测因素(P<0.05),基于急性冠脉综合征病人PCI术后发生造影剂肾病的独立预测因素糖尿病、尿KIM-1、尿NGAL以及尿CysC构建列线图模型,P=1/(1+e^(-x)),X=-2.345+0.824×尿CysC+0.565×糖尿病+0.685×尿NGAL+0.634×尿KIM-1,列线图模型的校准曲线显示,急性冠脉综合征病人PCI术后发生造影剂肾病风险的预测值与实际观测值符合度良好。结论:糖尿病、尿KIM-1、尿NGAL以及尿CysC为急性冠脉综合征病人PCI术后发生造影剂肾病的独立预测因素,基于独立预测因素建立的列线图模型具有较高的预测价值。 展开更多
关键词 急性冠脉综合征 造影剂肾病 最小绝对收缩选择算法回归 lasso回归 生物标志物 预测价值
下载PDF
基于LASSO回归和Cox比例风险模型探讨血红蛋白与颈动脉斑块形成的关联
7
作者 薛晶晶 王海涛 +1 位作者 贾会 肖春红 《中华保健医学杂志》 2024年第1期49-52,共4页
目的利用体检人群数据库,通过最小化绝对收缩和选择算子(least absolute shrinkage and selection operator,LASSO)回归算法筛选与颈动脉斑块形成的关键因子,并探索血红蛋白(hemoglobin,Hb)对颈动脉斑块形成的诊断价值,通过Cox比例风险... 目的利用体检人群数据库,通过最小化绝对收缩和选择算子(least absolute shrinkage and selection operator,LASSO)回归算法筛选与颈动脉斑块形成的关键因子,并探索血红蛋白(hemoglobin,Hb)对颈动脉斑块形成的诊断价值,通过Cox比例风险模型验证HB与颈动脉斑块形成的关联及关联强度。方法采用海军青岛特勤疗养中心体检中心体检数据,以2014年体检人群资料为队列随访基线,以2020年为随访时间终点,随访事件结局为该人群新发颈动脉斑块,利用LASSO回归算法筛选颈动脉斑块影响因素,并通过Cox比例风险模型分析HB与颈动脉斑块的关联。结果共纳入977名未患有颈动脉斑块的体检人群,经过6年体检定期随访,随访新发颈动脉斑块326例,累计患病率为33.4%。LASSO回归筛选变量年龄和吸烟等9个变量时,模型均方根误差最小,其对应的λ=0.0113,LASSO回归模型筛选变量通过ROC预测新发颈动脉斑块的曲线下面积AUC为0.762。通过Cox比例风险模型进一步验证血红蛋白是颈动脉斑块发病的独立危险预测因素。结论体检人群高水平血红蛋白可能与颈动脉斑块发病相关,应重点关注中老年体检人群血红蛋白水平,提示较高的营养水平的人群是防控颈动脉斑块新发的重点人群。 展开更多
关键词 最小绝对收缩和选择算子回归算法 血红蛋白 关联研究 队列研究
下载PDF
针对Lasso问题的多维权重求解算法 被引量:8
8
作者 陈善雄 刘小娟 +1 位作者 陈春蓉 郑方园 《计算机应用》 CSCD 北大核心 2017年第6期1674-1679,共6页
最小绝对收缩和选择算子(Lasso)在数据维度约减、异常检测方面有着较强的计算优势。针对Lasso用于异常检测中检测精度不高的问题,提出了一种基于多维度权重的最小角回归(LARS)算法解决Lasso问题。首先考虑每个回归变量在回归模型中所占... 最小绝对收缩和选择算子(Lasso)在数据维度约减、异常检测方面有着较强的计算优势。针对Lasso用于异常检测中检测精度不高的问题,提出了一种基于多维度权重的最小角回归(LARS)算法解决Lasso问题。首先考虑每个回归变量在回归模型中所占权重不同,即此属性变量在整体评价中的相对重要程度不同,故在LARS算法计算角分线时,将各回归变量与剩余变量的联合相关度纳入考虑,用来区分不同属性变量对检测结果的影响;然后在LARS算法中加入主成分分析(PCA)、独立权数法、基于Intercriteria相关性的指标的重要度评价(CRITIC)法这三种权重估计方法,并进一步对LARS求解的前进方向和前进变量选择进行优化。最后使用Pima Indians Diabetes数据集验证算法的优良性。实验结果表明,在更小阈值的约束条件下,加入多维权重后的LARS算法对Lasso问题的解具有更高的准确度,能更好地用于异常检测。 展开更多
关键词 最小绝对收缩和选择算子 变量选择 最小角回归 多元线性回归 加权
下载PDF
基于变量选择-神经网络模型的复杂路网短时交通流预测 被引量:13
9
作者 蒋士正 许榕 陈启美 《上海交通大学学报》 EI CAS CSCD 北大核心 2015年第2期281-286,共6页
针对传统交通流预测模型正在由单断面历史数据处理向多断面、多时刻历史数据处理转变,但在考虑各断面间的影响时,多变的交通状况往往会使预测模型复杂化的问题,引入一种多元线性回归最小绝对收缩和选择算子方法(Lasso),并利用其优秀的... 针对传统交通流预测模型正在由单断面历史数据处理向多断面、多时刻历史数据处理转变,但在考虑各断面间的影响时,多变的交通状况往往会使预测模型复杂化的问题,引入一种多元线性回归最小绝对收缩和选择算子方法(Lasso),并利用其优秀的变量选择能力,在复杂路网多断面中选出相关性较高的断面;结合神经网络(NN)的非线性特性,提出了Lasso-NN组合模型.结果表明:Lasso-NN模型在路网交叉口对未来15min交通流数据预测的误差率低于9.2%;在非交叉口的误差率低于6.7%,总体优于各自单独使用得出的结果. 展开更多
关键词 短时交通流预测 最小绝对收缩和选择算子 变量选择 神经网络
下载PDF
用于在线预测静态电压稳定性的SIPSS-Lasso-BP网络 被引量:12
10
作者 刘昇 徐政 +1 位作者 华文 黄弘扬 《中国电机工程学报》 EI CSCD 北大核心 2014年第34期6032-6041,共10页
快速求解系统负荷能力极限是在线评估电力系统电压稳定性的基本要求。提出一种用于离线拟合并在线预测负荷能力极限的SIPSS-Lasso-BP网络。该网络由基于电网状态相似度指标(similarity index of power system state,SIPSS)的样本筛选方... 快速求解系统负荷能力极限是在线评估电力系统电压稳定性的基本要求。提出一种用于离线拟合并在线预测负荷能力极限的SIPSS-Lasso-BP网络。该网络由基于电网状态相似度指标(similarity index of power system state,SIPSS)的样本筛选方法、最小绝对值收缩选择(least absolute shrinkage and select operator,Lasso)方法和BP(back propagation)神经网络共同组成。基于SIPSS的样本筛选方法以样本负荷能力极限值和电网状态相似度量化指标为依据,对训练样本进行筛选。Lasso方法对训练样本进行回归分析,确定各状态量中对负荷能力极限最具有解释性的系统状态量。BP神经网络通过精简后的训练样本来离线拟合负荷能力极限并用于在线预测。通过新英格兰39节点算例和某省实际算例对SIPSS-Lasso-BP网络的测试结果表明,该方法能够在保证预测精度的情况下明显提高BP神经网络的离线训练效率。 展开更多
关键词 静态电压稳定 神经网络 在线 电网状态相似度 最小绝对收缩选择
下载PDF
轨迹优化的LASSO网格自适应加密方法 被引量:5
11
作者 张松 侯明善 《系统工程与电子技术》 EI CSCD 北大核心 2016年第5期1195-1200,共6页
针对轨迹优化直接方法,提出了以控制变量曲率为基础的最小绝对收缩与选择算子(least absolute shrinkage and selection operator,LASSO)网格自适应加密策略,用于提高优化精度。以高分辨率二分网格节点为中心,构造径向基函数逼近控制曲... 针对轨迹优化直接方法,提出了以控制变量曲率为基础的最小绝对收缩与选择算子(least absolute shrinkage and selection operator,LASSO)网格自适应加密策略,用于提高优化精度。以高分辨率二分网格节点为中心,构造径向基函数逼近控制曲线,利用LASSO方法估计径向基函数系数,并自动筛选出位于控制曲线曲率极大区间的高分辨率节点加密当前网格。本文方法不需要进行状态和控制误差估计,适应性和通用性强。两组典型算例验证了方法的有效性。 展开更多
关键词 轨迹优化 网格加密 最小绝对收缩选择 径向基函数
下载PDF
基于增量学习和Lasso融合的数据可视化模式识别方法 被引量:4
12
作者 梁怀新 郝连旺 +2 位作者 宋佳霖 郑存芳 洪文学 《高技术通讯》 EI CAS 北大核心 2018年第1期39-51,共13页
提出了一种基于增量学习和最小绝对值收缩和选择算子(Lasso)特征选择融合的数据可视化模式识别方法。该方法首先对归一化数据进行一级Lasso筛选特征降维,之后对连续数据进行基于Gini指数的粒化,再送入增量模式学习系统进行增量学习,针... 提出了一种基于增量学习和最小绝对值收缩和选择算子(Lasso)特征选择融合的数据可视化模式识别方法。该方法首先对归一化数据进行一级Lasso筛选特征降维,之后对连续数据进行基于Gini指数的粒化,再送入增量模式学习系统进行增量学习,针对维数大量升高的情况进行Lasso二级特征筛选生成一致模式决策表,生成属性偏序结构图可视化规则发现。数据采用来自UCI的5个数据库,并与分类器KNN,SVM,Adaboost,Random Forest进行分类准确度比较,实验表明,基于该算法的分类精度普遍高于其他分类器水平,且属性偏序结构图可视化层次清晰鲜明。通过增量学习实验设计,得到了准确率、图结构更新和不同比例增量数据的动态关系,其中Pima Indians Diabetes数据学习达到40%时准确率(77.66%)超过Adaboost(75.32%)、SVM(77.27%)、1NN(59.74%)、3NN(75.97%)算法。结果表明该算法进行数据的可视化和模式识别是行之有效的。 展开更多
关键词 增量学习 最小绝对收缩和选择算子(lasso) 属性偏序结构图 可视化 模式识别 粒化
下载PDF
针对发动机平面度的二维FusedLASSO多元统计控制图 被引量:1
13
作者 陆永婷 李艳婷 《工业工程》 2015年第3期127-133,共7页
针对具有二维平面自然顺序关系的多元数据,提出了一种基于二维Fused LASSO回归模型的多元统计过程控制图。由于二维Fused LASSO多元回归模型对相邻系数的差异进行惩罚,因此它对检测出变量间的自然顺序关系非常有效。通过数值仿真实验可... 针对具有二维平面自然顺序关系的多元数据,提出了一种基于二维Fused LASSO回归模型的多元统计过程控制图。由于二维Fused LASSO多元回归模型对相邻系数的差异进行惩罚,因此它对检测出变量间的自然顺序关系非常有效。通过数值仿真实验可以看到,二维Fused LASSO控制图能更加快速有效地检测出具有二维平面自然顺序的多元过程中均值发生的变化,且在偏移量越大的情况下优势更加明显。最后通过对发动机平面度数据的实例验证,给出了二维Fused LASSO控制图的步骤和适用性。 展开更多
关键词 二维平面 多元统计过程控制图(MSPC) 模糊型最小绝对值压缩与选择法(Fused lasso) 平面度
下载PDF
基于TCGA和LASSO回归的胃癌预后lncRNA预测模型构建 被引量:8
14
作者 常紫薇 刘辉 +4 位作者 张秋萌 李兴雨 史旋 景丽伟 张超 《临床肿瘤学杂志》 CAS 北大核心 2020年第9期823-829,共7页
目的利用癌症基因组图谱(TCGA)数据库筛选胃癌预后相关关键长链非编码RNA(lncRNA)并构建预测模型,为判断胃癌患者预后情况提供参考依据。方法下载TCGA数据库中407例胃癌组织样本的RNA-Seq数据和443例胃腺癌患者临床及预后资料,对胃癌组... 目的利用癌症基因组图谱(TCGA)数据库筛选胃癌预后相关关键长链非编码RNA(lncRNA)并构建预测模型,为判断胃癌患者预后情况提供参考依据。方法下载TCGA数据库中407例胃癌组织样本的RNA-Seq数据和443例胃腺癌患者临床及预后资料,对胃癌组织与癌旁组织差异表达lncRNA进行分析,采用Cox比例风险回归模型及最小化绝对收缩和选择算子(LASSO)回归算法构建预测模型并对模型预测的有效性进行验证。采用多因素Cox回归模型分析该预测模型是否为胃癌独立的预后因素。结果纳入的368例胃癌样本中筛选出382个差异表达lncRNA。基于Cox&LASSO回归算法,构建和验证了25-lncRNA标志物模型;在训练集与验证集中,该模型的曲线下面积分别为0.719和0.672,且高风险组患者的总生存期(OS)明显低于低风险组患者(P<0.05)。多因素Cox回归分析显示,25-lncRNA标志物模型在322例具有完整临床及预后资料的病例中是影响OS的独立因素(HR=2.614,P=5.64E-07)。结论本研究确定了一个25-lncRNA标志物的风险评分模型,可作为独立预后因素对胃癌患者预后进行预测。 展开更多
关键词 胃癌 长非编码RNA 癌症基因组图谱 最小绝对收缩和选择算子 预后 预测模型
下载PDF
基于WGCNA联合LASSO筛选宫颈癌预后枢纽基因
15
作者 郭依琳 王璐 +3 位作者 徐臻 赵虎 韩少聪 王武亮 《医学研究杂志》 2023年第8期110-117,共8页
目的运用生物信息学方法筛选宫颈癌预后相关的分子标志物,为宫颈癌的预后预测提供依据。方法从GEO、TCGA和GTEx数据库下载宫颈癌转录组表达数据和相应的临床数据。在GSE9750和GSE52903数据集中,通过WGCNA和LASSO两种方法联合筛选宫颈癌... 目的运用生物信息学方法筛选宫颈癌预后相关的分子标志物,为宫颈癌的预后预测提供依据。方法从GEO、TCGA和GTEx数据库下载宫颈癌转录组表达数据和相应的临床数据。在GSE9750和GSE52903数据集中,通过WGCNA和LASSO两种方法联合筛选宫颈癌枢纽基因,GEPIA数据库进一步筛选与预后相关的枢纽基因。在GEO数据集(GSE9750和GSE52903)和TCGA联合GTEx数据集中比较预后相关的枢纽基因在宫颈癌和正常宫颈组织中的表达情况,并在HPA数据库中验证其蛋白水平的表达。利用ssGSEA分析宫颈癌肿瘤微环境(tumor microenvironment,TME)中免疫细胞浸润情况,探究预后相关的枢纽基因与免疫细胞浸润和免疫检查点基因表达的相关性。结果WGCNA和LASSO两种方法共筛选出7个宫颈癌枢纽基因,GEPIA数据库进一步筛选得到3个预后相关的枢纽基因MCM2、APOD和RAD54L。在GEO数据集(GSE9750和GSE52903)和TCGA联合GTEx数据集中,与正常宫颈组织比较,MCM2和RAD54L在宫颈癌组织中表达上调,而APOD则表达下调,与HPA数据库中免疫组化结果基本一致。3个预后相关的枢纽基因与免疫细胞和免疫检查点的表达有相关性。结论MCM2、APOD和RAD54L基因可能是与宫颈癌预后相关的分子标志物,与TME中免疫浸润相关。 展开更多
关键词 宫颈癌 预后 加权基因共表达网络分析 最小绝对选择收缩算子 免疫浸润
下载PDF
基于多变量模式分析的飞行学员脑功能连接的识别研究
16
作者 叶露 刘孟轩 +2 位作者 闫东峰 陈曦 马姗 《磁共振成像》 CAS CSCD 北大核心 2024年第2期108-114,共7页
目的基于多变量模式分析(multivariate pattern analysis,MVPA)对飞行学员和健康的普通人的大脑功能连接进行有效识别。材料与方法采集了40名已经取得执照的飞行专业在校学生与39名地面专业在校学生的功能磁共振数据。通过网络功能连接... 目的基于多变量模式分析(multivariate pattern analysis,MVPA)对飞行学员和健康的普通人的大脑功能连接进行有效识别。材料与方法采集了40名已经取得执照的飞行专业在校学生与39名地面专业在校学生的功能磁共振数据。通过网络功能连接分析得到功能连接矩阵作为特征,分别通过最小绝对收缩选择算子(least absolute shrinkage and selection operator,LASSO)算法与独立样本t检验方法对特征降维。使用不同核函数的支持向量机(support vector machine,SVM)进行训练和预测,使用留一交叉验证法进行模型性能评估,最终根据训练后SVM模型中的权重定位对应脑区之间的功能连接。结果使用LASSO特征筛选的线性(linear)核SVM模型准确率为81.82%,敏感度82.05%,特异度81.58%,曲线下面积(area under the curve,AUC)为0.88。核函数对模型准确率的影响不大。模型中右侧中央旁小叶、双侧中央后回、双侧顶下缘角回、右侧梭状回、左侧眶部额中回、左侧顶上回、右侧眶部额下回有较高的权重,模型中的权重集中在感觉运动网络(somatomotor network,SMN)与默认模式网络(default mode network,DMN),分别占用所有权重的25.62%和25.27%。结论结合LASSO算法进行特征筛选的SVM可以对飞行学员大脑进行有效识别,并且有更好的可解释性和更小的过拟合。模型权重信息反映了飞行学员主要在运动能力和感知能力有别于普通人。 展开更多
关键词 飞行学员 磁共振成像 功能连接 最小绝对收缩选择算子 支持向量机
下载PDF
基于LASSO变量选择联合贝叶斯网络构建乳腺癌患者5年预后风险模型的建立与预测 被引量:1
17
作者 闫慈 古丽努尔·阿卜杜热合曼 +1 位作者 张旭 孙刚 《重庆医学》 CAS 2024年第3期405-410,417,共7页
目的利用最小绝对收缩和选择算法(LASSO)回归和贝叶斯网络构建乳腺癌患者5年预后风险预测模型,以期探讨乳腺癌预后的因果联系和危险因素。方法回顾性分析新疆医科大学附属肿瘤医院乳腺癌专病库系统中2010年1—12月首诊为乳腺癌的17104... 目的利用最小绝对收缩和选择算法(LASSO)回归和贝叶斯网络构建乳腺癌患者5年预后风险预测模型,以期探讨乳腺癌预后的因果联系和危险因素。方法回顾性分析新疆医科大学附属肿瘤医院乳腺癌专病库系统中2010年1—12月首诊为乳腺癌的17104例患者的病例资料,包括人口统计学、病理、免疫组织化学、治疗信息等共76个指标。通过LASSO回归筛选出与乳腺癌预后明显相关的影响因素,借助贝叶斯网络分析影响因素间的相互作用并评价模型预测性能。结果LASSO回归筛选出18个与乳腺癌患者5年预后强相关的变量,分别是年龄、民族、初潮年龄、肿瘤分期、肿瘤家族史、是否绝经、手术分组、复发转移、组织学分级、雌激素受体状态、孕激素受体状态、Ki-67表达水平、HER2 Fish状态、放疗、化疗、靶向治疗、内分泌治疗、新辅助治疗。贝叶斯网络模型发现雌激素受体状态、孕激素受体状态、Ki-67表达水平与放疗、化疗等中间节点联系,间接地影响乳腺癌患者5年预后情况,Ki-67表达水平与HER2 Fish状态间接连接靶向治疗,而靶向治疗又是乳腺癌患者生存结局的父节点。模型评价发现贝叶斯网络模型的分类准确率为82.0%,曲线下面积为0.813。结论本研究构建的基于LASSO变量选择联合贝叶斯网络构建的乳腺癌5年生存预后风险预测模型具有良好的预测价值。 展开更多
关键词 乳腺癌 最小绝对收缩和选择算法 贝叶斯网络 预测 数据挖掘
下载PDF
基于X线的纹理分析在诊断跟距联合畸形中的临床应用价值
18
作者 郝海凤 张卜天 +3 位作者 滕佩宏 祖莅惠 刘畅 刘桂锋 《中国实验诊断学》 2024年第9期1021-1025,共5页
目的构建跟距联合畸形(talocalcaneal coalition)的X线影像组学模型,并检验其对跟距联合畸形的筛查诊断能力。方法回顾性分析2019年1月至2023年3月吉林大学中日联谊医院放射线科200例行踝关节或足部X线检查的患者临床放射资料(跟距联合... 目的构建跟距联合畸形(talocalcaneal coalition)的X线影像组学模型,并检验其对跟距联合畸形的筛查诊断能力。方法回顾性分析2019年1月至2023年3月吉林大学中日联谊医院放射线科200例行踝关节或足部X线检查的患者临床放射资料(跟距联合阳性及阴性各100例),手动勾画跟距联合畸形所在影像学区域,基于Python-pyradiomics库初步提取影像组学特征,通过曼-惠特尼U检验及最小绝对收缩和选择算子(least absolute shrinkage and selection operator,LASSO)算法实现数据降维和特征筛选,用支持向量机(support vector machine,SVM)对筛选得到的影像组学特征分类建模,最终以受试者工作特征(receiver operating characteristic,ROC)曲线的曲线下面积(area under the curve,AUC)、精确度、召回率、敏感度、特异度及F1分数评价模型的诊断效能。结果从X线图像中初步提取到105个组学特征,经曼-惠特尼U检验及LASSO算法筛选出7个强相关性特征,最终以SVM分类器所构建模型的测试集AUC值为0.93,精确度、召回率、敏感度、特异度和F1分数分别为88%、85%、93%、92%、88%,对跟距联合畸形有良好的筛查诊断能力。结论基于X线的影像组学模型可作为筛查诊断跟距联合畸形的一种准确高效的无创性工具,帮助临床医师诊断跟距联合畸形。 展开更多
关键词 跟距联合畸形 影像组学 X线成像 最小绝对收缩和选择算子 支持向量机
下载PDF
多传感器信息融合的轴承故障迁移诊断方法
19
作者 包从望 江伟 +1 位作者 张彩红 周大帅 《机电工程》 CAS 北大核心 2024年第5期878-885,共8页
在重型装备低速、重载、强噪声环境下,采用单一传感器难以全面获取轴承的故障诊断信息,导致故障识别率低、识别不稳定,致使变工况下轴承故障迁移诊断失效。针对以上问题,提出了一种多传感器信息融合的轴承故障迁移诊断方法。首先,结合... 在重型装备低速、重载、强噪声环境下,采用单一传感器难以全面获取轴承的故障诊断信息,导致故障识别率低、识别不稳定,致使变工况下轴承故障迁移诊断失效。针对以上问题,提出了一种多传感器信息融合的轴承故障迁移诊断方法。首先,结合传感器的通道数,构建了堆叠卷积神经网络(MCNNs)提取各个通道的故障特征;然后,在MCNNs中引入最小绝对收缩与选择算子(Lasso),并通过网络反向传播完成了特征权值的更新,从而获得了多通道特征的融合;最后,利用源域数据对模型进行了训练,提取了故障特征,并完成了特征融合,采用损失函数完成了模型参数的优化,将源域训练得到的模型结果作为目标域的初始模型,利用目标域样本对初始模型的参数进行了微调,从而完成了模型迁移;并进行了信息融合效果、方法对比以及传感器信息采集属性的性能实验。研究结果表明:传感器的安装位置对信息融合影响较大,MCNNs+Lasso方法具有较好的特征融合效果,平均迁移诊断精度为99.03%,部分精度可达99.97%,在多个变工况的迁移任务中表现出较高迁移精度和良好的泛化性能。 展开更多
关键词 滚动轴承 故障诊断 多传感器信息融合 堆叠卷积神经网络 最小绝对收缩选择算子 迁移学习
下载PDF
基于Nomogram模型鉴别肺腺癌病理亚型的临床价值
20
作者 王朝晖 岳军艳 《医学影像学杂志》 2024年第8期50-53,共4页
目的 探讨基于最小绝对收缩和选择算子(least absolute shrinkage and selection operator,LASSO)回归分析构建Nomogram模型预测原位腺癌(AIS)、微浸润腺癌(MIA)及浸润性腺癌(IAC)的价值。方法 选取本院97例经手术病理证实且病理亚型明... 目的 探讨基于最小绝对收缩和选择算子(least absolute shrinkage and selection operator,LASSO)回归分析构建Nomogram模型预测原位腺癌(AIS)、微浸润腺癌(MIA)及浸润性腺癌(IAC)的价值。方法 选取本院97例经手术病理证实且病理亚型明确的肺腺癌患者,将AIS和MIA归为第1组,IAC为第2组,比较两组患者年龄、性别、吸烟史、长径、短径及免疫组化Ki-67等临床医学特征差异,采用3D Slicer软件进行图像分割,特征提取与选择,通过LASSO算法对特征进行降维,筛选影像组学特征构建预测模型。再采用R软件的rms工具包构建Nomogram模型,计算ROC曲线下面积(AUC),以评价Nomogram模型鉴别肺磨玻璃结节病理亚型的效能。结果 1)性别、吸烟史、长径、短径及免疫组化Ki-67等临床医学特征均差异无统计学意义(P>0.05);2)筛选7个CT影像组学特征:平面度、大依赖低灰度强调、小波变换LHL第十百分位、小波变换HLL第十百分位、小波变换最小值、小波变换均值及小依赖低灰度强度比较,差异均有统计学意义(P均<0.05);3)基于CT影像组学特征建立预测肺磨玻璃结节病理亚型的Nomogram模型,训练集中AUC为0.863,准确率为87.9%,灵敏度为67.9%,特异度为91.1%;验证集中AUC为0.792,准确率为75.0%,灵敏度为66.7%,特异度为90.5%,可见此Nomogram模型具有较好的预测效能。结论 对于预测肺腺癌浸润程度,Nomogram模型具有明显优势,可作为一种鉴别手段。 展开更多
关键词 肺磨玻璃结节 最小绝对收缩和选择算子 Nomogram模型 病理亚型 体层摄影术 X线计算机
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部