期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于最大相关熵准则的网络流量预测 被引量:5
1
作者 曲桦 马文涛 +1 位作者 赵季红 王涛 《高技术通讯》 CAS CSCD 北大核心 2013年第1期1-7,共7页
为提高网络流量预测的精度,针对网络流量的非线性特征提出了一种基于新的误差评价准则——最大相关熵准则(MCC)的网络流量预测方法。该方法使用MCC对Elman神经网络进行训练。该评价准则是基于新的相似度函数——广义相关熵(corrent... 为提高网络流量预测的精度,针对网络流量的非线性特征提出了一种基于新的误差评价准则——最大相关熵准则(MCC)的网络流量预测方法。该方法使用MCC对Elman神经网络进行训练。该评价准则是基于新的相似度函数——广义相关熵(corrent.ropy)函数的概念建立的,此相似度函数以误差概率密度函数的Parzen窗估计和瑞利熵为基础。同时结合MCC和最小均方误差(MMSE)准则提出了一种混合的评价准则MCC-MMSE。针对网络流量的非线性、非高斯性、突变性等特性,分别以MCC、MCC-MMSE准则进行了Elman神经网络的训练,使用训练好的神经网络进行网络流量预测,仿真结果表明预测结果的精度优于以MMSE为准则的Elman神经网络的预测结果。 展开更多
关键词 最大相关准则(MCC) 最小均方误差(MMSE) Elman神经网络 网络流量 预测
下载PDF
基于改进神经网络PID的主蒸汽温度优化控制研究
2
作者 陆寿嵩 王晶岩 蔚焱 《微型电脑应用》 2024年第7期214-217,共4页
针对电厂主蒸汽温度PID串级控制系统参数整定繁琐、自适应性较差的问题,提出一种改进神经网络PID串级控制方法。为了降低主蒸汽温度控制系统的不确定性,基于最小误差熵(MEE)准则训练串级控制中的主神经网络PID控制器,并利用滚动时域窗... 针对电厂主蒸汽温度PID串级控制系统参数整定繁琐、自适应性较差的问题,提出一种改进神经网络PID串级控制方法。为了降低主蒸汽温度控制系统的不确定性,基于最小误差熵(MEE)准则训练串级控制中的主神经网络PID控制器,并利用滚动时域窗法递归估计跟踪误差的熵,提升算法运行效率。将主蒸汽温度误差序列和部分可测扰动输入神经网络PID控制器输入层,实现反馈控制与前馈控制相融合,提升控制系统抗干扰能力。通过与采用最小误差平方和(MSE)准则的神经网络PID控制器对比,采用MEE的神经PID控制器可以减小过热汽温的波动,减少控制系统的随机性。 展开更多
关键词 主蒸汽温度 神经网络PID 最小误差熵准则 最小误差平方和准则 不确定性 抗干扰
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部