低场核磁共振技术(LF-NMR)以其无损、非侵入、原位和绿色等优势被广泛应用在食品、农业、能源和化工等行业,尤其是在食品安全监管领域发挥着越来越重要的作用.在油品品质检测中,常规非负奇异值分解(SVD)弛豫(T_2)谱反演方法,只能反映光...低场核磁共振技术(LF-NMR)以其无损、非侵入、原位和绿色等优势被广泛应用在食品、农业、能源和化工等行业,尤其是在食品安全监管领域发挥着越来越重要的作用.在油品品质检测中,常规非负奇异值分解(SVD)弛豫(T_2)谱反演方法,只能反映光滑模型的T_2谱,对于稀疏模型的反演结果存在较大差异,从而导致T_2谱反演分辨率低和品质分析不准确的问题.针对这一问题,本文提出基于L1范数最小化约束的T_2谱稀疏反演算法,建立NMR回波曲线的稀疏模型表达式,利用截断牛顿内点法求解L1范数最小化问题,得到稀疏模型的T_2谱反演结果.通过构造光滑模型的T_2谱、以及不同峰值数和信噪比的稀疏模型的T_2谱,对比非负SVD算法和L1稀疏算法的反演效果,得到当信噪比大于20 d B时,L1稀疏算法能精确反演多峰T_2谱,峰值幅度和峰位置均优于非负SVD算法结果.最后通过多组煎炸油样品进行低场核磁共振检测实验和不同信噪比数据的反演结果对比,验证了L1范数稀疏反演算法的准确性和优越性.展开更多
文摘低场核磁共振技术(LF-NMR)以其无损、非侵入、原位和绿色等优势被广泛应用在食品、农业、能源和化工等行业,尤其是在食品安全监管领域发挥着越来越重要的作用.在油品品质检测中,常规非负奇异值分解(SVD)弛豫(T_2)谱反演方法,只能反映光滑模型的T_2谱,对于稀疏模型的反演结果存在较大差异,从而导致T_2谱反演分辨率低和品质分析不准确的问题.针对这一问题,本文提出基于L1范数最小化约束的T_2谱稀疏反演算法,建立NMR回波曲线的稀疏模型表达式,利用截断牛顿内点法求解L1范数最小化问题,得到稀疏模型的T_2谱反演结果.通过构造光滑模型的T_2谱、以及不同峰值数和信噪比的稀疏模型的T_2谱,对比非负SVD算法和L1稀疏算法的反演效果,得到当信噪比大于20 d B时,L1稀疏算法能精确反演多峰T_2谱,峰值幅度和峰位置均优于非负SVD算法结果.最后通过多组煎炸油样品进行低场核磁共振检测实验和不同信噪比数据的反演结果对比,验证了L1范数稀疏反演算法的准确性和优越性.