经典分类模型总是假定测试样本属于训练类之一,然而在网络安全、身份识别、医学诊断等非合作模式识别中往往存在许多非训练类例外模式,这时由于分类器缺乏拒识能力,只能给出错误判决。为此,本文构造了一种基于区分性投影结合最小L1球覆...经典分类模型总是假定测试样本属于训练类之一,然而在网络安全、身份识别、医学诊断等非合作模式识别中往往存在许多非训练类例外模式,这时由于分类器缺乏拒识能力,只能给出错误判决。为此,本文构造了一种基于区分性投影结合最小L1球覆盖的可拒识双层近邻分类器。该方法针对一类分类器忽略类别间区分性描述的不足,定义一种能够表征各训练类模式细节信息的差分矢量,形成新的差分特征。在差分特征空间进行L1范数最大化主成分分析(Ll-normmaximization principal component analysis,PCA-L1)构建新的区分性投影方法即差分矢量PCA-L1特征提取。然后,在投影空间对各类别分别建立最小L1球覆盖决策边界,这样对于输入的测试模式,便可做出拒识或者接受处理的判决。最后,针对接受的输入模式,再通过最近邻测试得到识别结果。在UCI数据库、MNIST手写体数据库和CMU AMP人脸表情数据库上的实验结果表明本文方法对训练类测试样本具有较高正确识别率的同时,同时能够对非训练类测试样本进行有效地拒识,在实际模式识别领域具有一定的应用价值。展开更多
低场核磁共振技术(LF-NMR)以其无损、非侵入、原位和绿色等优势被广泛应用在食品、农业、能源和化工等行业,尤其是在食品安全监管领域发挥着越来越重要的作用.在油品品质检测中,常规非负奇异值分解(SVD)弛豫(T_2)谱反演方法,只能反映光...低场核磁共振技术(LF-NMR)以其无损、非侵入、原位和绿色等优势被广泛应用在食品、农业、能源和化工等行业,尤其是在食品安全监管领域发挥着越来越重要的作用.在油品品质检测中,常规非负奇异值分解(SVD)弛豫(T_2)谱反演方法,只能反映光滑模型的T_2谱,对于稀疏模型的反演结果存在较大差异,从而导致T_2谱反演分辨率低和品质分析不准确的问题.针对这一问题,本文提出基于L1范数最小化约束的T_2谱稀疏反演算法,建立NMR回波曲线的稀疏模型表达式,利用截断牛顿内点法求解L1范数最小化问题,得到稀疏模型的T_2谱反演结果.通过构造光滑模型的T_2谱、以及不同峰值数和信噪比的稀疏模型的T_2谱,对比非负SVD算法和L1稀疏算法的反演效果,得到当信噪比大于20 d B时,L1稀疏算法能精确反演多峰T_2谱,峰值幅度和峰位置均优于非负SVD算法结果.最后通过多组煎炸油样品进行低场核磁共振检测实验和不同信噪比数据的反演结果对比,验证了L1范数稀疏反演算法的准确性和优越性.展开更多
文摘经典分类模型总是假定测试样本属于训练类之一,然而在网络安全、身份识别、医学诊断等非合作模式识别中往往存在许多非训练类例外模式,这时由于分类器缺乏拒识能力,只能给出错误判决。为此,本文构造了一种基于区分性投影结合最小L1球覆盖的可拒识双层近邻分类器。该方法针对一类分类器忽略类别间区分性描述的不足,定义一种能够表征各训练类模式细节信息的差分矢量,形成新的差分特征。在差分特征空间进行L1范数最大化主成分分析(Ll-normmaximization principal component analysis,PCA-L1)构建新的区分性投影方法即差分矢量PCA-L1特征提取。然后,在投影空间对各类别分别建立最小L1球覆盖决策边界,这样对于输入的测试模式,便可做出拒识或者接受处理的判决。最后,针对接受的输入模式,再通过最近邻测试得到识别结果。在UCI数据库、MNIST手写体数据库和CMU AMP人脸表情数据库上的实验结果表明本文方法对训练类测试样本具有较高正确识别率的同时,同时能够对非训练类测试样本进行有效地拒识,在实际模式识别领域具有一定的应用价值。
文摘低场核磁共振技术(LF-NMR)以其无损、非侵入、原位和绿色等优势被广泛应用在食品、农业、能源和化工等行业,尤其是在食品安全监管领域发挥着越来越重要的作用.在油品品质检测中,常规非负奇异值分解(SVD)弛豫(T_2)谱反演方法,只能反映光滑模型的T_2谱,对于稀疏模型的反演结果存在较大差异,从而导致T_2谱反演分辨率低和品质分析不准确的问题.针对这一问题,本文提出基于L1范数最小化约束的T_2谱稀疏反演算法,建立NMR回波曲线的稀疏模型表达式,利用截断牛顿内点法求解L1范数最小化问题,得到稀疏模型的T_2谱反演结果.通过构造光滑模型的T_2谱、以及不同峰值数和信噪比的稀疏模型的T_2谱,对比非负SVD算法和L1稀疏算法的反演效果,得到当信噪比大于20 d B时,L1稀疏算法能精确反演多峰T_2谱,峰值幅度和峰位置均优于非负SVD算法结果.最后通过多组煎炸油样品进行低场核磁共振检测实验和不同信噪比数据的反演结果对比,验证了L1范数稀疏反演算法的准确性和优越性.