期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于密度的计算机兵棋推演数据快速聚类算法 被引量:4
1
作者 石崇林 张茂军 +2 位作者 吴琳 唐宇波 景民 《系统工程与电子技术》 EI CSCD 北大核心 2011年第11期2428-2433,共6页
针对计算机兵棋推演数据的特点,提出了一种基于密度的快速聚类算法—基于密度的快速空间聚类算法(quick density based spatial clustering of applications with noise,QDBSCAN),目的是通过聚类检测孤立点,快速定位地面部队兵力部署上... 针对计算机兵棋推演数据的特点,提出了一种基于密度的快速聚类算法—基于密度的快速空间聚类算法(quick density based spatial clustering of applications with noise,QDBSCAN),目的是通过聚类检测孤立点,快速定位地面部队兵力部署上的缺陷。QDBSCAN算法在基于密度的空间聚类算法(density based spatial cluste-ring of applications with noise,DBSCAN)算法的基础上做了相关改进:在邻近度度量上提出了最短可行路径的概念,使聚类更符合计算机兵棋的规则;动态设置密度参数;采用提出的代表对象选择方法来减少对对象邻域的判断次数;按区域对数据进行分组以缩小聚类规模。实验表明,QDBSCAN算法的性能在数据规模较大的情况下,明显优于DBSCAN算法。 展开更多
关键词 数据挖掘 兵棋推演数据 基于密度的聚类算法 最短可行路径
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部