In most network analysis tools the computation of the shortest paths between all pairs of nodes is a fundamental step to the discovery of other properties. Among other properties is the computation of closeness centra...In most network analysis tools the computation of the shortest paths between all pairs of nodes is a fundamental step to the discovery of other properties. Among other properties is the computation of closeness centrality, a measure of the nodes that shows how central a vertex is on a given network. In this paper, the authors present a method to compute the All Pairs Shortest Paths on graphs that present two characteristics: abundance of nodes with degree value one, and existence of articulation points along the graph. These characteristics are present in many real life networks especially in networks that show a power law degree distribution as is the case of biological networks. The authors' method compacts the single nodes to their source, and then by using the network articulation points it disconnects the network and computes the shortest paths in the biconnected components. At the final step the authors proposed methods merges the results to provide the whole network shortest paths. The authors' method achieves remarkable speedup compared to state of the art methods to compute the shortest paths, as much as 7 fold speed up in artificial graphs and 3.25 fold speed up in real application graphs. The authors' performance improvement is unlike previous research as it does not involve elaborated setups since the authors algorithm can process significant instances on a popular workstation.展开更多
文摘In most network analysis tools the computation of the shortest paths between all pairs of nodes is a fundamental step to the discovery of other properties. Among other properties is the computation of closeness centrality, a measure of the nodes that shows how central a vertex is on a given network. In this paper, the authors present a method to compute the All Pairs Shortest Paths on graphs that present two characteristics: abundance of nodes with degree value one, and existence of articulation points along the graph. These characteristics are present in many real life networks especially in networks that show a power law degree distribution as is the case of biological networks. The authors' method compacts the single nodes to their source, and then by using the network articulation points it disconnects the network and computes the shortest paths in the biconnected components. At the final step the authors proposed methods merges the results to provide the whole network shortest paths. The authors' method achieves remarkable speedup compared to state of the art methods to compute the shortest paths, as much as 7 fold speed up in artificial graphs and 3.25 fold speed up in real application graphs. The authors' performance improvement is unlike previous research as it does not involve elaborated setups since the authors algorithm can process significant instances on a popular workstation.