Let G be a simple graph with no isolated vertices. A set S of vertices of G is a total dominating set if every vertex of G is adjacent to some vertex in S . The total domination number of G , den...Let G be a simple graph with no isolated vertices. A set S of vertices of G is a total dominating set if every vertex of G is adjacent to some vertex in S . The total domination number of G , denoted by γ t (G) , is the minimum cardinality of a total dominating set of G . It is shown that if G is a graph of order n with minimum degree at least 3, then γ t (G)≤n/2 . Thus a conjecture of Favaron, Henning, Mynhart and Puech is settled in the affirmative.展开更多
文摘Let G be a simple graph with no isolated vertices. A set S of vertices of G is a total dominating set if every vertex of G is adjacent to some vertex in S . The total domination number of G , denoted by γ t (G) , is the minimum cardinality of a total dominating set of G . It is shown that if G is a graph of order n with minimum degree at least 3, then γ t (G)≤n/2 . Thus a conjecture of Favaron, Henning, Mynhart and Puech is settled in the affirmative.