期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
对应用于手写体字符识别的最近邻分类器原型学习算法的评估(下)
1
作者 Cheng-LinLiu 张罡 《图象识别与自动化》 2002年第1期24-31,共8页
关键词 手写体 字符识别 最近分类 原型学习算法 数字识别 汉字
下载PDF
对应用于手写体字符识别的最近邻分类器原型学习算法的评估(上)
2
作者 Cheng-Lin Liu 张罡 《图象识别与自动化》 2001年第2期26-32,共7页
原型学习对提高最近邻分类器的判决性能以及降低存储和计算量很有效。本文回顾了最近邻分类器的一些原型学习算法,并对其在手写体字符识别中的应用特性作了比较。这些算法包括著名的LVQ和一些通过梯度搜索使外界影响最小的参数最优化... 原型学习对提高最近邻分类器的判决性能以及降低存储和计算量很有效。本文回顾了最近邻分类器的一些原型学习算法,并对其在手写体字符识别中的应用特性作了比较。这些算法包括著名的LVQ和一些通过梯度搜索使外界影响最小的参数最优化方法。本文还提出了一些新的算法,并同现有的算法作了比较。在基于CENPARMI数据库手写体数字识别和基于ETL8B2数据库手写体汉字识别方面,对11种原型学习算法进行了测试。实验结果显示,基于参数最优化的算法通常优于LVQ算法,特别是最小分类误差算法(MCE)、GLVO算法和一种新的算法(MAXP1)效果最好。 展开更多
关键词 最近分类 原型学习算法 手写体数字识别
下载PDF
基于自然邻居和最小生成树的原型选择算法 被引量:3
3
作者 朱庆生 段浪军 杨力军 《计算机科学》 CSCD 北大核心 2017年第4期241-245,268,共6页
K最近邻居是最流行的有监督分类算法之一。然而,传统的K最近邻居有两个主要的问题:参数K的选择以及在大规模数据集下过高的时间和空间复杂度需求。为了解决这些问题,提出了一种新的原型选择算法,它保留了一些对分类贡献很大的关键原型点... K最近邻居是最流行的有监督分类算法之一。然而,传统的K最近邻居有两个主要的问题:参数K的选择以及在大规模数据集下过高的时间和空间复杂度需求。为了解决这些问题,提出了一种新的原型选择算法,它保留了一些对分类贡献很大的关键原型点,同时移除噪声点和大多数对分类贡献较小的点。不同于其他原型选择算法,该算法使用了自然邻居这个新的邻居概念来做数据预处理,然后基于设定的终止条件构建若干个最小生成树。基于最小生成树,保留边界原型,同时生成一些具有代表性的内部原型。基于UCI基准数据集进行实验,结果表明提出的算法有效地约简了原型的数量,同时保持了与传统KNN相同水平的分类准确率;而且,该算法在分类准确率和原型保留率上优于其他原型选择算法。 展开更多
关键词 K最近邻居 原型选择 自然邻居 最小生成树 分类
下载PDF
自适应边界逼近的原型选择算法 被引量:1
4
作者 李娟 王宇平 《模式识别与人工智能》 EI CSCD 北大核心 2015年第6期568-576,共9页
针对传统原型选择算法易受样本读取序列、异常样本等干扰的缺陷,通过分析原型算法学习规则,借鉴最近特征线法思想,改进传统原型算法,提出一种自适应边界逼近的原型选择算法.该算法在原型学习过程中改进压缩近邻法的同类近邻吸收策略,保... 针对传统原型选择算法易受样本读取序列、异常样本等干扰的缺陷,通过分析原型算法学习规则,借鉴最近特征线法思想,改进传统原型算法,提出一种自适应边界逼近的原型选择算法.该算法在原型学习过程中改进压缩近邻法的同类近邻吸收策略,保留更优于当前最近边界原型的同类样本,同时建立原型更新准则,并运用该准则实现原型集的周期性动态更新.该算法不仅克服读取序列、异常样本对原型选取的影响,而且降低原型集规模.最后通过人工数据和UCI基准数据集验证文中算法.实验表明,文中算法选择的原型集比其他算法产生的原型集更能体现数据集的分布特征,平均压缩率有所提高,且分类精度与运行时间优于其他算法. 展开更多
关键词 模式分类 原型选择 边界逼近 最近边界原型 自适应原型学习
下载PDF
一种免除二值化的视频叠加中文字符识别方法 被引量:2
5
作者 田洁 王伟强 孙翼 《中国科学院大学学报(中英文)》 CSCD 北大核心 2018年第3期402-408,共7页
提出一种新的用于识别视频中字幕文字的方法。鉴于视频中文字的大小、颜色、渲染风格和分辨率的不同,以及视频中各种复杂背景的影响,识别视频中的叠加文字是一个尚未解决的问题。目前,大多数视频叠加文字识别方法都基于视频文字的二值... 提出一种新的用于识别视频中字幕文字的方法。鉴于视频中文字的大小、颜色、渲染风格和分辨率的不同,以及视频中各种复杂背景的影响,识别视频中的叠加文字是一个尚未解决的问题。目前,大多数视频叠加文字识别方法都基于视频文字的二值化和传统OCR引擎的结合。然而,二值化过程容易引入噪声和文字笔划信息的丢失。另外,传统OCR技术主要专注于高分辨率的扫描打印文档,这些文档具有背景单一、噪声少和笔划信息较完整的特点。因此,传统OCR引擎用于识别叠加文字二值化后的结果可能不够鲁棒。为解决这个问题,直接从未二值化的叠加视频文字图像中提取Gabor特征用于训练二层字符识别器。实验结果表明,本文提出的方法在多字体视频叠加中文文字识别上有良好的效果。 展开更多
关键词 视频叠加文字 OCR GABOR 最近原型分类(npc)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部