在中压直流(medium voltage direct current,MVDC)输电系统中,模块化多电平变换器(modular multilevel converter,MMC)各桥臂子模块数往往较少,因此采用传统最近电平逼近(nearest level modulation,NLM)策略进行调制时各电平持续时间较...在中压直流(medium voltage direct current,MVDC)输电系统中,模块化多电平变换器(modular multilevel converter,MMC)各桥臂子模块数往往较少,因此采用传统最近电平逼近(nearest level modulation,NLM)策略进行调制时各电平持续时间较长,从而导致交流侧输出谐波含量升高。为解决上述问题,提出了一种适用于MMC-MVDC的无差拍最近电流逼近(deadbeat nearest current modulation,DNCM)控制策略,该策略在各电平持续时间内,根据交流侧实际电流和参考电流差值确定子模块开通数量,通过降低MMC单一电平持续时间来改善交流侧谐波畸变,且各子模块开关频率较低,谐波改善程度与子模块数无关。同时,定量分析了DNCM的控制原理,并得到了电流误差的波动范围。最后,在Matlab/Simulink中搭建了MMC-MVDC仿真模型,验证了所提控制策略的有效性。展开更多
文摘在中压直流(medium voltage direct current,MVDC)输电系统中,模块化多电平变换器(modular multilevel converter,MMC)各桥臂子模块数往往较少,因此采用传统最近电平逼近(nearest level modulation,NLM)策略进行调制时各电平持续时间较长,从而导致交流侧输出谐波含量升高。为解决上述问题,提出了一种适用于MMC-MVDC的无差拍最近电流逼近(deadbeat nearest current modulation,DNCM)控制策略,该策略在各电平持续时间内,根据交流侧实际电流和参考电流差值确定子模块开通数量,通过降低MMC单一电平持续时间来改善交流侧谐波畸变,且各子模块开关频率较低,谐波改善程度与子模块数无关。同时,定量分析了DNCM的控制原理,并得到了电流误差的波动范围。最后,在Matlab/Simulink中搭建了MMC-MVDC仿真模型,验证了所提控制策略的有效性。