最近邻特征空间嵌入(nearest feature space embedding,NFSE)方法选取最近邻特征空间时使用欧氏距离度量,导致样本的类内离散度和类间离散度同步变化,无法准确反映样本在高维空间的分布;选取每个样本最近邻特征空间都要遍历所有类,导致...最近邻特征空间嵌入(nearest feature space embedding,NFSE)方法选取最近邻特征空间时使用欧氏距离度量,导致样本的类内离散度和类间离散度同步变化,无法准确反映样本在高维空间的分布;选取每个样本最近邻特征空间都要遍历所有类,导致训练时间长。针对以上问题,提出非线性距离的最近邻特征空间嵌入改进方法(nearest feature space embedding method based on nonlinear distance metric,NDNFSE),引入非线性距离公式选取最近邻特征空间,并使用结合夹角度量的最近邻分类器,提高了识别率;仅在样本的近邻类中选取最近邻特征空间,有效减少了训练时间。实验表明,NDNFSE的训练时间明显低于NFSE,识别率总体高于各对比算法。展开更多
在机器学习领域,半监督学习作为一种有力工具吸引了越来越多的关注,其利用少量带标签数据和大量无标签数据进行有效学习,其中基于图的半监督学习方法因其优雅的数学形式和良好的学习性能而引起更广泛的研究.针对现有基于图的半监督学习...在机器学习领域,半监督学习作为一种有力工具吸引了越来越多的关注,其利用少量带标签数据和大量无标签数据进行有效学习,其中基于图的半监督学习方法因其优雅的数学形式和良好的学习性能而引起更广泛的研究.针对现有基于图的半监督学习方法所存在的模型参数敏感和数据判别信息不充分等问题,提出一种稀疏特征空间嵌入正则化(Sparse Feature Space embedding Regularization,SFSR)半监督学习框架,其主要思想为:首先分别将原始数据嵌入到线性特征空间,然后利用特征空间嵌入投影点集来稀疏重构原始数据,随后在由原始数据线性张成的标签空间通过保留这种稀疏表示关系来构建一个Laplacian正则化项,或称SFSR,最后提出一个鲁棒的基于SFSR的半监督学习框架,在几个实际基准数据库上的综合实验结果证实了所提框架的鲁棒有效性.展开更多
文摘最近邻特征空间嵌入(nearest feature space embedding,NFSE)方法选取最近邻特征空间时使用欧氏距离度量,导致样本的类内离散度和类间离散度同步变化,无法准确反映样本在高维空间的分布;选取每个样本最近邻特征空间都要遍历所有类,导致训练时间长。针对以上问题,提出非线性距离的最近邻特征空间嵌入改进方法(nearest feature space embedding method based on nonlinear distance metric,NDNFSE),引入非线性距离公式选取最近邻特征空间,并使用结合夹角度量的最近邻分类器,提高了识别率;仅在样本的近邻类中选取最近邻特征空间,有效减少了训练时间。实验表明,NDNFSE的训练时间明显低于NFSE,识别率总体高于各对比算法。
文摘在机器学习领域,半监督学习作为一种有力工具吸引了越来越多的关注,其利用少量带标签数据和大量无标签数据进行有效学习,其中基于图的半监督学习方法因其优雅的数学形式和良好的学习性能而引起更广泛的研究.针对现有基于图的半监督学习方法所存在的模型参数敏感和数据判别信息不充分等问题,提出一种稀疏特征空间嵌入正则化(Sparse Feature Space embedding Regularization,SFSR)半监督学习框架,其主要思想为:首先分别将原始数据嵌入到线性特征空间,然后利用特征空间嵌入投影点集来稀疏重构原始数据,随后在由原始数据线性张成的标签空间通过保留这种稀疏表示关系来构建一个Laplacian正则化项,或称SFSR,最后提出一个鲁棒的基于SFSR的半监督学习框架,在几个实际基准数据库上的综合实验结果证实了所提框架的鲁棒有效性.