在处理雷达信号时,基于密度的空间聚类(Density-based spatial clustering of applications with noise,DBSCAN)分选算法依赖于参数或阈值的选取,影响分选的准确率。为此提出了一种改进的雷达信号脉冲分选算法,在DBSCAN聚类基础上结合了...在处理雷达信号时,基于密度的空间聚类(Density-based spatial clustering of applications with noise,DBSCAN)分选算法依赖于参数或阈值的选取,影响分选的准确率。为此提出了一种改进的雷达信号脉冲分选算法,在DBSCAN聚类基础上结合了K中位最近邻(K-median nearest neighbor,KMNN)算法,通过引入自衰减系数并设置阈值上限对参数值列表进行二次处理,可以自适应根据聚类结果与不同参数时的K值之间的关系确定最优的邻域半径和最少点个数,提高了分选的正确率。通过仿真实验验证了算法利用雷达脉冲描述字特征进行自适应分选的有效性。展开更多
文摘在处理雷达信号时,基于密度的空间聚类(Density-based spatial clustering of applications with noise,DBSCAN)分选算法依赖于参数或阈值的选取,影响分选的准确率。为此提出了一种改进的雷达信号脉冲分选算法,在DBSCAN聚类基础上结合了K中位最近邻(K-median nearest neighbor,KMNN)算法,通过引入自衰减系数并设置阈值上限对参数值列表进行二次处理,可以自适应根据聚类结果与不同参数时的K值之间的关系确定最优的邻域半径和最少点个数,提高了分选的正确率。通过仿真实验验证了算法利用雷达脉冲描述字特征进行自适应分选的有效性。