为解决传统迭代最近点(iterative closest point,ICP)算法存在配准效率低等问题,提出一种改进的采样一致性点云配准算法。通过自适应体素网格滤波法对点云进行处理,可以根据点云量级自动修改体素立方体大小,剔除偏差较大的噪点,降低点...为解决传统迭代最近点(iterative closest point,ICP)算法存在配准效率低等问题,提出一种改进的采样一致性点云配准算法。通过自适应体素网格滤波法对点云进行处理,可以根据点云量级自动修改体素立方体大小,剔除偏差较大的噪点,降低点云数据量级;在快速点特征直方图(fast point features histogram,FPFH)中引入距离的二次函数,降低远距离邻域点的权值,提高近距离邻域点的权值。运用公开数据集Bunny点云数据进行实验的结果表明,该算法相对于传统点云配准算法的配准精度提升了54.65%,配准效率提升了39.39%。运用多组数据验证了该算法的有效性。展开更多
激光点云常规匹配算法是迭代最近点(Iterative Closest Point, ICP)算法,但其收敛速度慢、鲁棒性差,因此,提出一种融合多种优化算法的激光点云高效ICP配准方法。首先对点云体素滤波降采样,通过ISS算子提取关键点,采用快速点特征直方图(F...激光点云常规匹配算法是迭代最近点(Iterative Closest Point, ICP)算法,但其收敛速度慢、鲁棒性差,因此,提出一种融合多种优化算法的激光点云高效ICP配准方法。首先对点云体素滤波降采样,通过ISS算子提取关键点,采用快速点特征直方图(Fast Point Feature Histograms, FPFH)提取关键点特征,嵌入多核多线程并行处理模式(OpenMP)提高特征提取速度;然后基于提取的FPFH特征,使用采样一致性初始配准算法(Sample Consensus Initial Alignment, SAC-IA)进行相似特征点粗配准,获取点云集间的初始旋转平移变换矩阵;最后采用ICP算法进行精配准,同时采用最优节点优先(Best Bin First, BBF)优化K-D tree近邻搜索法来加速对应关系点对的搜索,并设定动态阈值消除错误对应点对,提高配准快速性和准确性。对两个实例的配准点云进行了实验验证,结果表明,提出的优化配准算法具有明显速度优势和精度优势。展开更多
文摘三维点云数据配准在机器人环境感知与建模、虚拟现实、人机交互、逆向工程等领域有着广阔的应用前景。针对传统迭代最近点(Iterative Closest Point,ICP)算法中存在的收敛速度慢、鲁棒性差等问题进行研究,提出了一种融合采样一致性和迭代最近点算法的点云配准方法,对点云数据的快速点特征直方图(Fast Point Features Histograms,FPFH)特征进行提取并对这些特征使用采样一致性初始配准算法(Sample Consensus Initial Alignment,SAC-IA)进而得到点云集间的对应关系,计算出点云的初始变换,从而获得一个较好的配准位置,提出了k-d树近邻搜索方法加速搜寻对应点对,并利用点云的方向向量阈值去除迭代最近点算法产生的误点对,实现点云的精确配准。实验结果表明,算法取得了较高的配准精度,加快了收敛速度。
文摘为解决传统迭代最近点(iterative closest point,ICP)算法存在配准效率低等问题,提出一种改进的采样一致性点云配准算法。通过自适应体素网格滤波法对点云进行处理,可以根据点云量级自动修改体素立方体大小,剔除偏差较大的噪点,降低点云数据量级;在快速点特征直方图(fast point features histogram,FPFH)中引入距离的二次函数,降低远距离邻域点的权值,提高近距离邻域点的权值。运用公开数据集Bunny点云数据进行实验的结果表明,该算法相对于传统点云配准算法的配准精度提升了54.65%,配准效率提升了39.39%。运用多组数据验证了该算法的有效性。