在处理雷达信号时,基于密度的空间聚类(Density-based spatial clustering of applications with noise,DBSCAN)分选算法依赖于参数或阈值的选取,影响分选的准确率。为此提出了一种改进的雷达信号脉冲分选算法,在DBSCAN聚类基础上结合了...在处理雷达信号时,基于密度的空间聚类(Density-based spatial clustering of applications with noise,DBSCAN)分选算法依赖于参数或阈值的选取,影响分选的准确率。为此提出了一种改进的雷达信号脉冲分选算法,在DBSCAN聚类基础上结合了K中位最近邻(K-median nearest neighbor,KMNN)算法,通过引入自衰减系数并设置阈值上限对参数值列表进行二次处理,可以自适应根据聚类结果与不同参数时的K值之间的关系确定最优的邻域半径和最少点个数,提高了分选的正确率。通过仿真实验验证了算法利用雷达脉冲描述字特征进行自适应分选的有效性。展开更多
数据缺失在各个研究领域中普遍存在,缺失的数据会对计算的性能与结果产生严重的影响。为提高填补缺失数据的准确度,提出一种基于聚类分析的缺失数据最近邻填补算法。该算法在对数据聚类分析后根据类别分配权重,在MGNN(MahalanobisGray a...数据缺失在各个研究领域中普遍存在,缺失的数据会对计算的性能与结果产生严重的影响。为提高填补缺失数据的准确度,提出一种基于聚类分析的缺失数据最近邻填补算法。该算法在对数据聚类分析后根据类别分配权重,在MGNN(MahalanobisGray and Nearest Neighbor)算法的基础上改进了计算方法和填充值的计算方式。实验结果表明,该方法填补的准确度比传统KNN和MGNN算法要高。展开更多
文摘在处理雷达信号时,基于密度的空间聚类(Density-based spatial clustering of applications with noise,DBSCAN)分选算法依赖于参数或阈值的选取,影响分选的准确率。为此提出了一种改进的雷达信号脉冲分选算法,在DBSCAN聚类基础上结合了K中位最近邻(K-median nearest neighbor,KMNN)算法,通过引入自衰减系数并设置阈值上限对参数值列表进行二次处理,可以自适应根据聚类结果与不同参数时的K值之间的关系确定最优的邻域半径和最少点个数,提高了分选的正确率。通过仿真实验验证了算法利用雷达脉冲描述字特征进行自适应分选的有效性。
文摘数据缺失在各个研究领域中普遍存在,缺失的数据会对计算的性能与结果产生严重的影响。为提高填补缺失数据的准确度,提出一种基于聚类分析的缺失数据最近邻填补算法。该算法在对数据聚类分析后根据类别分配权重,在MGNN(MahalanobisGray and Nearest Neighbor)算法的基础上改进了计算方法和填充值的计算方式。实验结果表明,该方法填补的准确度比传统KNN和MGNN算法要高。