The system considered in this work consists of a cylinder which is controlled by a pair of three-way servo valves rather than a four-way one.Therefore,the cylinder output stiffness is independently controllable of the...The system considered in this work consists of a cylinder which is controlled by a pair of three-way servo valves rather than a four-way one.Therefore,the cylinder output stiffness is independently controllable of the output force.A discontinuous projection based adaptive robust controller (ARC) was constructed to achieve high-accuracy output force trajectory tracking for the system.In ARC,on-line parameter adaptation method was adopted to reduce the extent of parametric uncertainties due to the variation of friction parameters,and sliding mode control method was utilized to attenuate the effects of parameter estimation errors,unmodelled dynamics and disturbance.Furthermore,output stiffness maximization/minimization was introduced to fulfill the requirement of many robotic applications.Extensive experimental results were presented to illustrate the effectiveness and the achievable performance of the proposed scheme.For tracking a 0.5 Hz sinusoidal trajectory,maximum tracking error is 4.1 N and average tracking error is 2.2 N.Meanwhile,the output stiffness can be made and maintained near its maximum/minimum.展开更多
In wireless multimedia communications, it is extremely difficult to derive general end-to-end capacity results because of decentralized packet scheduling and the interference between communicating nodes. In this paper...In wireless multimedia communications, it is extremely difficult to derive general end-to-end capacity results because of decentralized packet scheduling and the interference between communicating nodes. In this paper, we present a state-based channel capacity perception scheme to provide statistical Quality-of-Service (QoS) guarantees under a medium or high traffic load for IEEE 802.11 wireless multi-hop networks. The proposed scheme first perceives the state of the wireless link from the MAC retransmission information and extends this information to calculate the wireless channel capacity, particularly under a saturated traffic load, on the basis of the interference among flows and the link state in the wireless multi-hop networks. Finally, the adaptive optimal control algorithm allocates a network resource and forwards the data packet by taking into consideration the channel capacity deployments in multi-terminal or multi-hop mesh networks. Extensive computer simulations demonstrate that the proposed scheme can achieve better performance in terms of packet delivery ratio and network throughput compared to the existing capacity prediction schemes.展开更多
In this paper, a trust region method for equality constrained optimizationbased on nondifferentiable exact penalty is proposed. In this algorithm, the trail step ischaracterized by computation of its normal component ...In this paper, a trust region method for equality constrained optimizationbased on nondifferentiable exact penalty is proposed. In this algorithm, the trail step ischaracterized by computation of its normal component being separated from computation of itstangential component, i.e., only the tangential component of the trail step is constrained by trustradius while the normal component and trail step itself have no constraints. The other maincharacteristic of the algorithm is the decision of trust region radius. Here, the decision of trustregion radius uses the information of the gradient of objective function and reduced Hessian.However, Maratos effect will occur when we use the nondifferentiable exact penalty function as themerit function. In order to obtain the superlinear convergence of the algorithm, we use the twiceorder correction technique. Because of the speciality of the adaptive trust region method, we usetwice order correction when p = 0 (the definition is as in Section 2) and this is different from thetraditional trust region methods for equality constrained optimization. So the computation of thealgorithm in this paper is reduced. What is more, we can prove that the algorithm is globally andsuperlinearly convergent.展开更多
For ill-posed bilevel programming problem,the optimistic solution is always the best decision for the upper level but it is not always the best choice for both levels if the authors consider the model's satisfacto...For ill-posed bilevel programming problem,the optimistic solution is always the best decision for the upper level but it is not always the best choice for both levels if the authors consider the model's satisfactory degree in application.To acquire a more satisfying solution than the optimistic one to realize the two levels' most profits,this paper considers both levels' satisfactory degree and constructs a minimization problem of the two objective functions by weighted summation.Then,using the duality gap of the lower level as the penalty function,the authors transfer these two levels problem to a single one and propose a corresponding algorithm.Finally,the authors give an example to show a more satisfying solution than the optimistic solution can be achieved by this algorithm.展开更多
基金Projects(50775200,50905156)supported by the National Natural Science Foundation of China
文摘The system considered in this work consists of a cylinder which is controlled by a pair of three-way servo valves rather than a four-way one.Therefore,the cylinder output stiffness is independently controllable of the output force.A discontinuous projection based adaptive robust controller (ARC) was constructed to achieve high-accuracy output force trajectory tracking for the system.In ARC,on-line parameter adaptation method was adopted to reduce the extent of parametric uncertainties due to the variation of friction parameters,and sliding mode control method was utilized to attenuate the effects of parameter estimation errors,unmodelled dynamics and disturbance.Furthermore,output stiffness maximization/minimization was introduced to fulfill the requirement of many robotic applications.Extensive experimental results were presented to illustrate the effectiveness and the achievable performance of the proposed scheme.For tracking a 0.5 Hz sinusoidal trajectory,maximum tracking error is 4.1 N and average tracking error is 2.2 N.Meanwhile,the output stiffness can be made and maintained near its maximum/minimum.
基金supported by the National Natural Science Foundation of China under Grants No.60972038,No.61001077,No.61101105 the Scientific Research Foundation for Nanjing University of Posts and Telecommunications under Grant No.NY211007+2 种基金 the Open Research Fund of National Mobile Communications Research Laboratory,Southeast University under Grant No.2011D05 Specialized Research Fund for the Doctoral Program of Higher Education under Grant No.20113223120002 University Natural Science Research Project of Jiangsu Province under Grant No.11KJB510016
文摘In wireless multimedia communications, it is extremely difficult to derive general end-to-end capacity results because of decentralized packet scheduling and the interference between communicating nodes. In this paper, we present a state-based channel capacity perception scheme to provide statistical Quality-of-Service (QoS) guarantees under a medium or high traffic load for IEEE 802.11 wireless multi-hop networks. The proposed scheme first perceives the state of the wireless link from the MAC retransmission information and extends this information to calculate the wireless channel capacity, particularly under a saturated traffic load, on the basis of the interference among flows and the link state in the wireless multi-hop networks. Finally, the adaptive optimal control algorithm allocates a network resource and forwards the data packet by taking into consideration the channel capacity deployments in multi-terminal or multi-hop mesh networks. Extensive computer simulations demonstrate that the proposed scheme can achieve better performance in terms of packet delivery ratio and network throughput compared to the existing capacity prediction schemes.
基金This research is supported in part by the National Natural Science Foundation of China(Grant No. 39830070,10171055)and China Postdoctoral Science Foundation
文摘In this paper, a trust region method for equality constrained optimizationbased on nondifferentiable exact penalty is proposed. In this algorithm, the trail step ischaracterized by computation of its normal component being separated from computation of itstangential component, i.e., only the tangential component of the trail step is constrained by trustradius while the normal component and trail step itself have no constraints. The other maincharacteristic of the algorithm is the decision of trust region radius. Here, the decision of trustregion radius uses the information of the gradient of objective function and reduced Hessian.However, Maratos effect will occur when we use the nondifferentiable exact penalty function as themerit function. In order to obtain the superlinear convergence of the algorithm, we use the twiceorder correction technique. Because of the speciality of the adaptive trust region method, we usetwice order correction when p = 0 (the definition is as in Section 2) and this is different from thetraditional trust region methods for equality constrained optimization. So the computation of thealgorithm in this paper is reduced. What is more, we can prove that the algorithm is globally andsuperlinearly convergent.
基金supported by the National Science Foundation of China under Grant No.71171150the National Natural Science Foundation of ChinaTian Yuan Foundation under Grant No.11226226
文摘For ill-posed bilevel programming problem,the optimistic solution is always the best decision for the upper level but it is not always the best choice for both levels if the authors consider the model's satisfactory degree in application.To acquire a more satisfying solution than the optimistic one to realize the two levels' most profits,this paper considers both levels' satisfactory degree and constructs a minimization problem of the two objective functions by weighted summation.Then,using the duality gap of the lower level as the penalty function,the authors transfer these two levels problem to a single one and propose a corresponding algorithm.Finally,the authors give an example to show a more satisfying solution than the optimistic solution can be achieved by this algorithm.