Using monthly precipitation and monthly mean temperature, a surface humid index was proposed. According to the index, the distributed characteristics of extreme dryness has been fully analyzed. The results indicated t...Using monthly precipitation and monthly mean temperature, a surface humid index was proposed. According to the index, the distributed characteristics of extreme dryness has been fully analyzed. The results indicated that there is an obvious increasing trend of extreme dryness in the central part of northern China and northeastern China in the last 10 years, which shows a high frequency period of extreme dryness; while a low frequency period in the regions during the last 100 years. Compared with variation trend of the temperature in these regions, the region of high frequent extreme dryness is consistent with the warming trend in the same region.展开更多
Monthly temperature and precipitation time-series for the Zhujiang River Basin are analyzed in order to identify changes in climate extremes. Daily temperature and precipitation data from 1961 to 2007 of 192 meteorolo...Monthly temperature and precipitation time-series for the Zhujiang River Basin are analyzed in order to identify changes in climate extremes. Daily temperature and precipitation data from 1961 to 2007 of 192 meteorological stations are used. Two temperature indicators (monthly mean and monthly maximum mean) and three precipitation indicators (monthly total, monthly maximum consecutive 5-day precipitation, and monthly dry days) are analyzed. Tendencies in all five indicators can be observed. Many stations show significant positive trends (above the 90% confidence level) for monthly mean temperatures and monthly maximum mean temperatures. For all months, a significant increase in temperature from 1961 to 2007 can be observed in the entire basin with the coastal area in particular. Positive trends of precipitation extremes can be observed from January to March. Negative trends are detected from September to November. The number of dry days in October increased significantly at 40% of all meteorological stations. Stations with changes of monthly precipitation extremes are scattered over the Zhujiang River Basin. An aggregation of heat waves and droughts can be detected which is accompanied by significant increases of temperature extremes and the negative tendencies in precipitation extremes. The detection of tendencies in climate station density. extremes essentially relies on a good data quality and high展开更多
The recorded meteorological data of monthly mean surface air temperature from 72 meteorological stations over the Qinghal-Tibet Plateau in the period of 1960-2003 have been analyzed by using Empirical Orthogonal Funct...The recorded meteorological data of monthly mean surface air temperature from 72 meteorological stations over the Qinghal-Tibet Plateau in the period of 1960-2003 have been analyzed by using Empirical Orthogonal Function (EOF) method, to understand the detailed features of its temporal and spatial variations. The results show that there was a high consistency of the monthly mean surface air temperature, with a secondarily different variation between the north and the south of the plateau. Warming trend has existed at all stations since the 1960s, while the warming rates were different in various zones. The source regions of big rivers had intense warming tendency. June, November and December were the top three fast-warming months since the 1960s; while April, July and September presented dramatic warming tendency during the last decade.展开更多
Based on the monthly mean temperatu re,the changing processes and tendencies of temperature during1951-2000in Jilin Province,which i s in Northeast China,are analyzed.A nd the spatial characteristics of th e change ar...Based on the monthly mean temperatu re,the changing processes and tendencies of temperature during1951-2000in Jilin Province,which i s in Northeast China,are analyzed.A nd the spatial characteristics of th e change are submitted.In the past 50years the te mperature of Jilin Province was increasing just like the other areas in th e world.Since 1990,the increasing of temperature has been more obvious th an that in the previous 40a.From the west to the east,the province has larger tem perature rising.According to Principal Component Analysis(PCA)of temperature field,Jilin Province is divided int o 3regions and the degree of becoming warmer is different from region to re gion.During the period of 1951to 2000,the annual temperature in Jilin Province has been rising,so has the temperature in winter and summer.The average temperature in t he 1990s was 0.5-2.0℃higher than that in the 1950s.From the west to the east,the increasing of temperature becam e smaller.展开更多
We studied the impact of sea surface temperature anomaly(SSTA) in the Japan Sea and the sea area east of Japan on the winter rainfall and air temperature in Northeast(NE) China using the singular value decomposition(S...We studied the impact of sea surface temperature anomaly(SSTA) in the Japan Sea and the sea area east of Japan on the winter rainfall and air temperature in Northeast(NE) China using the singular value decomposition(SVD) and empirical orthogonal function(EOF). The monthly-mean rainfall data observed at 160 stations in China, monthly-mean sea surface temperature(SST) of the Hadley Center for Climate Prediction and Research and monthly-mean air temperature from the NCEP reanalysis during 1960–2011 were used. Correlation analysis indicates that the SSTAs in the Japan Sea in September may last for three or four months and are an important index for forecasting the winter rainfall and air temperature in NE China. Positive SSTAs in the central Japan Sea and in the sea area east of Tokyo correspond to positive rainfall anomaly and negative air temperature anomaly in NE China. With the rise of SST in the Japan Sea, a weak cyclone appears over the Japan Sea. The northeasterly wind transports water vapor from the Okhotsk to NE China, resulting in more rainfall and lower air temperature. Negative SSTA years are accompanied by warmer air temperature and less snow in NE China. The 1000 h Pa geopotential height anomaly and wind anomaly fields are simulated by IAP-9L model, which supports the analysis results.展开更多
Xiliaohe River watershed plays an important role in regional and national grain security.With the development of society and economy,water consumption that increased dramatically causes water shortages.Crop water requ...Xiliaohe River watershed plays an important role in regional and national grain security.With the development of society and economy,water consumption that increased dramatically causes water shortages.Crop water requirement can provide quantitative basis for making regional irrigation scheme.In this study,spring maize water requirement is calculated by using PenmanMonteith formula and spring maize coefficient from May to September at 10 meteorological stations in Xiliaohe River watershed from 1951 to 2005.The variation trend of the spring maize water requirement during the whole growing stage,water requirement in every month,and meteorological influencing factors are obtained by using Mann-Kendall method,and the degree of grey incidence between the water requirement and meteorological influencing factors are shown.The results are the spring maize water requirement during the whole growing stages increases at half of the stations in Xiliaohe River watershed,and are remarkably affected by the water requirement in May.The monthly mean,maximum and minimum air temperature form May to September show an increasing trend in Xiliaohe River watershed in recent 55 years.The monthly mean and minimum air temperature increases notably.The relative humidity,precipitation,wind speed and sunshine show a decreasing trend with variety for different months.The monthly maximum air temperature,wind speed,sunshine and monthly mean air temperature have the highest correlation degree with spring maize water requirement from May to September.展开更多
The world is facing a big challenge of climatic change, mainly due to increasing concentrations of GHGs (greenhouse gases) in the atmosphere. Many researches indicated that the climate change occurred disproportiona...The world is facing a big challenge of climatic change, mainly due to increasing concentrations of GHGs (greenhouse gases) in the atmosphere. Many researches indicated that the climate change occurred disproportionately on developing countries such as MENA (Middle East and North Africa) countries. The climatic model CGCM3.1 (T47) 2 is used in this research to explain the changes in average temperatures and the rainfall on the MENA region with special emphases on Iraq. Historical records (1900-2009) and future (2020-2099) were studied and compared; each period was divided to four sub-periods of thirty years. The results showed that the average monthly temperature for the four historical periods fluctuated between the lowest and highest value as follows: 9.2-32.9, 10.3-32.7, 9.3-32.8 and 8.6-33.9 (℃). The rainfall for historical periods kept on the same distribution during the past 109 years, and fluctuated between the lowest and highest value of 21.3 mm and 37.6 mm with an average that reached up to 26.51 mm. For the future period, the maximum average monthly temperature reached up to 37.41 (℃) during June and minimum average monthly temperature reached up to 4.24 (℃) during January. The average monthly temperature fluctuated giving a clear impression that the future portends a higher temperature. The average monthly rainfall, for the future period, fluctuated between the lowest and highest value of 12.91 mm and 20.63 mm with an average that reached 16.84 mm which represent a reduction percentage of about 36.47% relative to the historical record of rainfall for the sanae months.展开更多
The monthly mean temperature for October in the Fenglin National Natural Reserve of Wuying, in Heilongjiang province, was reconstructed for the period running from 1796 to 2004 using RES tree ring chronology. The expl...The monthly mean temperature for October in the Fenglin National Natural Reserve of Wuying, in Heilongjiang province, was reconstructed for the period running from 1796 to 2004 using RES tree ring chronology. The explained variance of the reconstruction is 34.8%. In the past 209 years, there are 4 colder and 4 warmer periods according to the reconstructed series. A period of 3.33-year is found significant based on the power spectrum method. Abrupt changes are also detected in the reconstructed series with 30-year time scale based on the smoothing t-test, smoothing F-test and Le Page test methods. Significant abrupt changes in mean value are observed for around 1871 and 1900, and a significant abrupt change in standard deviation is observed for around 1851.展开更多
We developed a method for analyzing the change in snow cover using MODIS imagery.The method was applied to images of western Sichuan Province,China taken between 2002 and 2008.The model for extracting data on snow cov...We developed a method for analyzing the change in snow cover using MODIS imagery.The method was applied to images of western Sichuan Province,China taken between 2002 and 2008.The model for extracting data on snow cover from MODIS images was created by spectral analysis.The multi-temporal snow layers were used to evaluate the temporal and spatial change in the area under snow cover between 2002 and 2008 using overlay and statistical analysis in ARCGIS.The majority(60.4%) of western Sichuan was rarely covered by snow and only 0.3% was covered by perennial snow in 2002.Snow cover was pri-marily distributed in Garzê and Aba.The area under snow cover was significantly and negatively correlated with the average monthly temperature and rainfall in 2002.The largest area under snow cover was measured in 2006 and the smallest was in 2007.Similarly,the area of snowmelt was the highest in 2006 and lowest in 2007.In general,the elevation of the snow line in-creased throughout the period 2002-2008;however,the elevation decreased in some years.Our results provide an important insight into the distribution of snow in this region,and may be useful for climate modeling and predicting the availability of water resources and the occurrence of floods and droughts.展开更多
This paper proposes a general systems theory for fractals visualising the emergence of successively larger scale fluctuations resulting from the space-time integration of enclosed smaller scale fluctuations. Global gr...This paper proposes a general systems theory for fractals visualising the emergence of successively larger scale fluctuations resulting from the space-time integration of enclosed smaller scale fluctuations. Global gridded time series data sets of monthly mean temperatures for the period 1880- 2007/2008 are analysed to show that data sets and corresponding power spectra exhibit distributions close to the model predicted inverse power law distribution. The model predicted and observed universal spectrum for interannual variability rules out linear secular trends in global monthly mean temperatures. Global warming results in intensification of fluctuations of all scales and manifested immediately in high frequency fluctuations.展开更多
基金Major State Basic Research Development Program of China No.G1999043400+1 种基金 National Natural Science Foundation of China No.40375028
文摘Using monthly precipitation and monthly mean temperature, a surface humid index was proposed. According to the index, the distributed characteristics of extreme dryness has been fully analyzed. The results indicated that there is an obvious increasing trend of extreme dryness in the central part of northern China and northeastern China in the last 10 years, which shows a high frequency period of extreme dryness; while a low frequency period in the regions during the last 100 years. Compared with variation trend of the temperature in these regions, the region of high frequent extreme dryness is consistent with the warming trend in the same region.
基金the National Basic Research Program of China(973 Program)(No. 2010CB428401)the Special Fund of Climate Change of the China Meteorological Administration (CCSF-09-16)by the National Natural Science Foundation of China(40910177)
文摘Monthly temperature and precipitation time-series for the Zhujiang River Basin are analyzed in order to identify changes in climate extremes. Daily temperature and precipitation data from 1961 to 2007 of 192 meteorological stations are used. Two temperature indicators (monthly mean and monthly maximum mean) and three precipitation indicators (monthly total, monthly maximum consecutive 5-day precipitation, and monthly dry days) are analyzed. Tendencies in all five indicators can be observed. Many stations show significant positive trends (above the 90% confidence level) for monthly mean temperatures and monthly maximum mean temperatures. For all months, a significant increase in temperature from 1961 to 2007 can be observed in the entire basin with the coastal area in particular. Positive trends of precipitation extremes can be observed from January to March. Negative trends are detected from September to November. The number of dry days in October increased significantly at 40% of all meteorological stations. Stations with changes of monthly precipitation extremes are scattered over the Zhujiang River Basin. An aggregation of heat waves and droughts can be detected which is accompanied by significant increases of temperature extremes and the negative tendencies in precipitation extremes. The detection of tendencies in climate station density. extremes essentially relies on a good data quality and high
基金Under the auspices of the National Natural Science Foundation of China (No. 40401054, No. 40121101), Hundred Talents Program of Chinese Academy of Sciences, President Foundation of Chinese Academy of Sciences, Knowledge Innovation Program of Chinese Academy of Sciences (No. KZCX3-SW-339), National Basic Research Program of China (No. 2005CB422004)
文摘The recorded meteorological data of monthly mean surface air temperature from 72 meteorological stations over the Qinghal-Tibet Plateau in the period of 1960-2003 have been analyzed by using Empirical Orthogonal Function (EOF) method, to understand the detailed features of its temporal and spatial variations. The results show that there was a high consistency of the monthly mean surface air temperature, with a secondarily different variation between the north and the south of the plateau. Warming trend has existed at all stations since the 1960s, while the warming rates were different in various zones. The source regions of big rivers had intense warming tendency. June, November and December were the top three fast-warming months since the 1960s; while April, July and September presented dramatic warming tendency during the last decade.
文摘Based on the monthly mean temperatu re,the changing processes and tendencies of temperature during1951-2000in Jilin Province,which i s in Northeast China,are analyzed.A nd the spatial characteristics of th e change are submitted.In the past 50years the te mperature of Jilin Province was increasing just like the other areas in th e world.Since 1990,the increasing of temperature has been more obvious th an that in the previous 40a.From the west to the east,the province has larger tem perature rising.According to Principal Component Analysis(PCA)of temperature field,Jilin Province is divided int o 3regions and the degree of becoming warmer is different from region to re gion.During the period of 1951to 2000,the annual temperature in Jilin Province has been rising,so has the temperature in winter and summer.The average temperature in t he 1990s was 0.5-2.0℃higher than that in the 1950s.From the west to the east,the increasing of temperature becam e smaller.
基金supported by Innovation and Research Foundation of Ocean University of China(No.201261009)the National Natural Science Foundation of China(Nos.40930844 and 10735030)the National Basic Research Program of China(the 973 Program)under grant No.2005CB422 301
文摘We studied the impact of sea surface temperature anomaly(SSTA) in the Japan Sea and the sea area east of Japan on the winter rainfall and air temperature in Northeast(NE) China using the singular value decomposition(SVD) and empirical orthogonal function(EOF). The monthly-mean rainfall data observed at 160 stations in China, monthly-mean sea surface temperature(SST) of the Hadley Center for Climate Prediction and Research and monthly-mean air temperature from the NCEP reanalysis during 1960–2011 were used. Correlation analysis indicates that the SSTAs in the Japan Sea in September may last for three or four months and are an important index for forecasting the winter rainfall and air temperature in NE China. Positive SSTAs in the central Japan Sea and in the sea area east of Tokyo correspond to positive rainfall anomaly and negative air temperature anomaly in NE China. With the rise of SST in the Japan Sea, a weak cyclone appears over the Japan Sea. The northeasterly wind transports water vapor from the Okhotsk to NE China, resulting in more rainfall and lower air temperature. Negative SSTA years are accompanied by warmer air temperature and less snow in NE China. The 1000 h Pa geopotential height anomaly and wind anomaly fields are simulated by IAP-9L model, which supports the analysis results.
基金supported by Natural Science Foundation of China (Grant no.40771204,Grant no. 40801006 and Grant no.40801223)
文摘Xiliaohe River watershed plays an important role in regional and national grain security.With the development of society and economy,water consumption that increased dramatically causes water shortages.Crop water requirement can provide quantitative basis for making regional irrigation scheme.In this study,spring maize water requirement is calculated by using PenmanMonteith formula and spring maize coefficient from May to September at 10 meteorological stations in Xiliaohe River watershed from 1951 to 2005.The variation trend of the spring maize water requirement during the whole growing stage,water requirement in every month,and meteorological influencing factors are obtained by using Mann-Kendall method,and the degree of grey incidence between the water requirement and meteorological influencing factors are shown.The results are the spring maize water requirement during the whole growing stages increases at half of the stations in Xiliaohe River watershed,and are remarkably affected by the water requirement in May.The monthly mean,maximum and minimum air temperature form May to September show an increasing trend in Xiliaohe River watershed in recent 55 years.The monthly mean and minimum air temperature increases notably.The relative humidity,precipitation,wind speed and sunshine show a decreasing trend with variety for different months.The monthly maximum air temperature,wind speed,sunshine and monthly mean air temperature have the highest correlation degree with spring maize water requirement from May to September.
文摘The world is facing a big challenge of climatic change, mainly due to increasing concentrations of GHGs (greenhouse gases) in the atmosphere. Many researches indicated that the climate change occurred disproportionately on developing countries such as MENA (Middle East and North Africa) countries. The climatic model CGCM3.1 (T47) 2 is used in this research to explain the changes in average temperatures and the rainfall on the MENA region with special emphases on Iraq. Historical records (1900-2009) and future (2020-2099) were studied and compared; each period was divided to four sub-periods of thirty years. The results showed that the average monthly temperature for the four historical periods fluctuated between the lowest and highest value as follows: 9.2-32.9, 10.3-32.7, 9.3-32.8 and 8.6-33.9 (℃). The rainfall for historical periods kept on the same distribution during the past 109 years, and fluctuated between the lowest and highest value of 21.3 mm and 37.6 mm with an average that reached up to 26.51 mm. For the future period, the maximum average monthly temperature reached up to 37.41 (℃) during June and minimum average monthly temperature reached up to 4.24 (℃) during January. The average monthly temperature fluctuated giving a clear impression that the future portends a higher temperature. The average monthly rainfall, for the future period, fluctuated between the lowest and highest value of 12.91 mm and 20.63 mm with an average that reached 16.84 mm which represent a reduction percentage of about 36.47% relative to the historical record of rainfall for the sanae months.
基金supported by the Special Research Program for Public-welfare Forestry(No. 200804001)National Science and Technology Support Program(No.2007BAC29B01)the Natural Science Foundation of China(No.40705032)
文摘The monthly mean temperature for October in the Fenglin National Natural Reserve of Wuying, in Heilongjiang province, was reconstructed for the period running from 1796 to 2004 using RES tree ring chronology. The explained variance of the reconstruction is 34.8%. In the past 209 years, there are 4 colder and 4 warmer periods according to the reconstructed series. A period of 3.33-year is found significant based on the power spectrum method. Abrupt changes are also detected in the reconstructed series with 30-year time scale based on the smoothing t-test, smoothing F-test and Le Page test methods. Significant abrupt changes in mean value are observed for around 1871 and 1900, and a significant abrupt change in standard deviation is observed for around 1851.
基金supported by the National High-Tech Research & Devel-opment Program of China (Grant No.2009AA12Z140)the National Basic Research Program of China (Grant Nos. 2009CB421105 and 2007CB714401)+1 种基金the National Natural Science Foundation of China (Grant No. 40771144)SCYSF (Grant No. 08ZQ026-047)
文摘We developed a method for analyzing the change in snow cover using MODIS imagery.The method was applied to images of western Sichuan Province,China taken between 2002 and 2008.The model for extracting data on snow cover from MODIS images was created by spectral analysis.The multi-temporal snow layers were used to evaluate the temporal and spatial change in the area under snow cover between 2002 and 2008 using overlay and statistical analysis in ARCGIS.The majority(60.4%) of western Sichuan was rarely covered by snow and only 0.3% was covered by perennial snow in 2002.Snow cover was pri-marily distributed in Garzê and Aba.The area under snow cover was significantly and negatively correlated with the average monthly temperature and rainfall in 2002.The largest area under snow cover was measured in 2006 and the smallest was in 2007.Similarly,the area of snowmelt was the highest in 2006 and lowest in 2007.In general,the elevation of the snow line in-creased throughout the period 2002-2008;however,the elevation decreased in some years.Our results provide an important insight into the distribution of snow in this region,and may be useful for climate modeling and predicting the availability of water resources and the occurrence of floods and droughts.
文摘This paper proposes a general systems theory for fractals visualising the emergence of successively larger scale fluctuations resulting from the space-time integration of enclosed smaller scale fluctuations. Global gridded time series data sets of monthly mean temperatures for the period 1880- 2007/2008 are analysed to show that data sets and corresponding power spectra exhibit distributions close to the model predicted inverse power law distribution. The model predicted and observed universal spectrum for interannual variability rules out linear secular trends in global monthly mean temperatures. Global warming results in intensification of fluctuations of all scales and manifested immediately in high frequency fluctuations.