The application of a double-face reinforced retaining wall during road construction can reduce engineering costs, speed road paving and have a good influence on environment. An ABAQUS numerical model of a double-face ...The application of a double-face reinforced retaining wall during road construction can reduce engineering costs, speed road paving and have a good influence on environment. An ABAQUS numerical model of a double-face reinforced retaining wall was built. The influence of surface subsidence induced by mining was considered. A physical model test was also performed in the laboratory on a reinforced retaining wall. The influence of subsidence induced by mining was observed. The numerical results match measurements in the laboratory very well. The vertical pressure on the base of the retaining wall, the horizontal displacement of the wall and the horizontal soil pressure acting on the wall were analyzed. The differential settlement of the reinforced belt and axial forces in the wall were also studied.展开更多
Objective:To investigate the feasibility of a finite element model as an ideal research tool for human maxillofacial gunshot wounds.Methods:Mandible CT scan data on the Chinese Visible Human were imported into MIMICS ...Objective:To investigate the feasibility of a finite element model as an ideal research tool for human maxillofacial gunshot wounds.Methods:Mandible CT scan data on the Chinese Visible Human were imported into MIMICS software to obtain the surface mesh of the mandible.Then,these surface-meshed models were imported into ANSA software for automatic net generation.Elements and nodes were partitioned on the basis of the mesh to obtain a three-dimensional finite element model for the mandible with every internal parameter consistent with those of our previously developed model in the pig mandible.The finite element model was imported into LS-DYNA for computation.Finally,the LS-POST was used to complete the simulation and the measurements.Results:A three-dimensional finite element model was successfully established for gunshot wounds in the human mandible.The stress distribution and the degree of injury were simulated dynamically for shots from two types of projectiles in the mandible at one entry angle and at three impact velocities.Conclusion:Three-dimensional finite element models will become ideal research tools for treatment of ballistic wounds of the human maxillofacial region.Using this human mandibular model as a foundation,we will be able to successfully develop three-dimensional finite element models for human maxillofacial gunshot wounds.展开更多
Patterns of ground movement and pore water pressure variation are obtained through a case study using a finite element method. With the progress of excavation, ground subsidence, ground inclination and horizontal disp...Patterns of ground movement and pore water pressure variation are obtained through a case study using a finite element method. With the progress of excavation, ground subsidence, ground inclination and horizontal displacement accelerates. Along the striking direction, a subsidence basin is formed on the ground surface induced by underground mining. The maximum subsidence is around 5.41m. The ratio of ground subsidence to the thickness of the coal seam is 1.08. The maximum inclination is 11.5 mm/m. The maximum horizontal displacement is 2.15 mm/m. At the time the coal has been excavated, the maximum pore water pressure reaches 25 kPa. In order to improve protection of structures lo- cated over the area with underground mining, the variation of additional stresses of a railway bridge induced by ground surface deformation is analyzed. The main effect of underground mining on the railway bridge is the tensile stress and the maximum value reaches as high as 4.29 MPa, which is greater than the concrete tensile strength.展开更多
Four different routes of asymmetric reduction rolling were conducted on AZ31 magnesium alloy to investigate their effect on the microstructure evolution and mechanical properties. Route A is the forward rolling; while...Four different routes of asymmetric reduction rolling were conducted on AZ31 magnesium alloy to investigate their effect on the microstructure evolution and mechanical properties. Route A is the forward rolling; while during routes B and C the sheets are rotated 180o in rolling direction and normal direction, respectively; route D is the unidirectional rolling. The strain states of rolled sheets were analyzed by the finite element method, while the microstructure and texture were observed using optical microscopy, X-ray diffraction and electron back-scattered diffraction techniques, and the mechanical properties were measured by tensile test. The results show that route D produced the largest effective strain. Compared with other samples, sample D exhibited a homogeneous microstructure with fine grains as well as a weak and tilted texture, in corresponding, it performed excellent tensile properties, which suggested that route D was an effective way to enhance the strength and plasticity of AZ31 sheet.展开更多
In this work, we treat scattering objects, water, surface and bottom in a truly unified manner in a parallel finitedifference time-domain (FDTD) scheme, which is suitable for distributed parallel computing in a mess...In this work, we treat scattering objects, water, surface and bottom in a truly unified manner in a parallel finitedifference time-domain (FDTD) scheme, which is suitable for distributed parallel computing in a message passing interface (MPI) programming environment. The algorithm is implemented on a cluster-based high performance computer system. Parallel computation is performed with different division methods in 2D and 3D situations. Based on analysis of main factors affecting the speedup rate and parallel efficiency, data communication is reduced by selecting a suitable scheme of task division. A desirable scheme is recommended, giving a higher speedup rate and better efficiency. The results indicate that the unified parallel FDTD algorithm provides a solution to the numerical computation of acoustic scattering.展开更多
This study presents a reliable method for the semi-automatic generation of an FE model, which determines both geometrical data and bone properties from patient CT scans.3D FE analysis is one of the best approaches to ...This study presents a reliable method for the semi-automatic generation of an FE model, which determines both geometrical data and bone properties from patient CT scans.3D FE analysis is one of the best approaches to predict the stress and strain distribution in complex bone structures, but its accuracy strongly depends on the precision of input information. In geometric reconstruction, various methods of image processing, geometric modeling and finite element analysis are combined and extended. Emphasis is given to the assignment of the material properties based on the density values computed from CT data. Through this technique, the model with high geometric and material similarities were generated in an easy way. Consequently, the patient-specific FE model from mandible CT data is realized also.展开更多
In this study, we present a practical technique of transforming cross-hole EM data into the inter-well resistivity distribution. The a priori information constraint is incorporated into an iterative regularized invers...In this study, we present a practical technique of transforming cross-hole EM data into the inter-well resistivity distribution. The a priori information constraint is incorporated into an iterative regularized inversion procedure and a variable roughness is added into the inversion process. Finite element approximation based on a two and a half-dimensional (2.5D) model has been developed for the forward problem and the "pseudo-forward" problem needed for constructing the sensitivity matrix and synthetic data set. The regularized least-squares inversion scheme, constrained with the a priori information obtained from well logs, was adopted to reconstruct the inter-well resistivity profile from two synthetic electromagnetic data sets and field data acquired in the Gudao Oil Field, East China. The partial derivatives of the sensitivity matrix were computed by the adjoint equation based on the reciprocity principle. Inversion results of the synthetic and field data examples suggest that our method is robust and stable in the presence of random noise in the field data and can be used for cross-hole EM field data interpretation.展开更多
The groundwater flow characteristics of the Galma River Basin were simulated numerically by using the finite element method. The two-dimensional partial differential equation governing transient flow in an unconfined ...The groundwater flow characteristics of the Galma River Basin were simulated numerically by using the finite element method. The two-dimensional partial differential equation governing transient flow in an unconfined aquifer was modified to incorporate the effect of precipitation as a measurable source as it affects groundwater flow, such that for a given amount of precipitation over the basin, the flow of groundwater can be predicted at any point in the basin. With appropriate initial and boundary conditions, the modified equation was solved and the solution programmed for computer run. After calibration and verification, the borehole hydraulic data for the basin was used to predict flow due to groundwater hydraulic heads for 20 years. Findings revealed that there is a direct correlation of 0.79 and a strong linear relationship between simulated and observed hydraulic heads, and that data availability and choice of appropriate initial and boundary conditions are significant for good numerical modelling results. The contour plot of the hydraulic heads showed variation of heads from higher values at the upstream to lower values downstream, and groundwater flow follows the natural topography of the land from the upstream end of the basin towards the main streams and Galma River.展开更多
With consideration of the special hydrogeological conditions and layout characteristics of the hydraulic structures, the seepage control measures of dam abutment and underground powerhouse on the right bank of JinPing...With consideration of the special hydrogeological conditions and layout characteristics of the hydraulic structures, the seepage control measures of dam abutment and underground powerhouse on the right bank of JinPing-I hydropower station is drawn up. Based on the three dimensional finite element analysis of seepage control with dry area virtual flow constant mesh analysis method, the rationality of the seepage control measures of dam abutment and underground powerhouse has been verified and the key factors affecting the effect of seepage have been compared. In combination with the curtain of dam abutment, the curtain of underground powerhouse is reasonable. The results showed that the steel liner of penstock after the curtain is necessary.展开更多
We introduce some ways to compute the lower and upper bounds of the Laplace eigenvalue problem.By using the special nonconforming finite elements,i.e.,enriched Crouzeix-Raviart element and extended Q1ro t,we get the l...We introduce some ways to compute the lower and upper bounds of the Laplace eigenvalue problem.By using the special nonconforming finite elements,i.e.,enriched Crouzeix-Raviart element and extended Q1ro t,we get the lower bound of the eigenvalue.Additionally,we use conforming finite elements to do the postprocessing to get the upper bound of the eigenvalue,which only needs to solve the corresponding source problems and a small eigenvalue problem if higher order postprocessing method is implemented.Thus,we can obtain the lower and upper bounds of the eigenvalues simultaneously by solving eigenvalue problem only once.Some numerical results are also presented to demonstrate our theoretical analysis.展开更多
Underground pipelines, on which a city relies for survival and development, have become an important part of lifeline engineering. Underground pipelines are utilized for conveying liquid, gas or loose solid, pipeline ...Underground pipelines, on which a city relies for survival and development, have become an important part of lifeline engineering. Underground pipelines are utilized for conveying liquid, gas or loose solid, pipeline leakage and damage occasionally resulting from corrosion. Corrosion monitoring of underground pipelines is aimed at ensuring their normal operation and preventing loss of life and property. In this paper, a new method to monitor corrosion of pipelines has been proposed to solve the mentioned problem. Under the influence of internal pressure and corrosion, the pipeline wall becomes thinner and the circumferential deformation increases. The method is to indirectly investigate pipeline corrosion by monitoring the circumferential deformation. Numerical simulation confirms that the circumferential strain curve of the pipeline wall measured by using the proposed method to describe the corrosion is feasible. The proposed method provides a new way for real-time and long-term monitoring and management of underground pipelines.展开更多
Based on the basic principle of the finite element method, the implicit composite element method for numerical simulation of seepage in underground engineering is proposed. In the simulation, the faults and drainage h...Based on the basic principle of the finite element method, the implicit composite element method for numerical simulation of seepage in underground engineering is proposed. In the simulation, the faults and drainage holes are set implicitly in the model elements without adding additional elements. Elements containing fault or drainage-hole data are termed composite elements. Then, their information data in model could be obtained. By determining the osmotic transmission matrix of the composite elements, the permeability coefficient matrix is then obtained. The method was applied to the numerical simulation of the seepage field around the underground powerhouse of the Ganhe Pumping Station in Yunnan, China, using a compiled three-dimensional finite element method calculation program. The rock mass around the site includes two faults. The seepage field in the rock mass was analyzed at different stages of the engineering project. The results show that, before the excavation of the underground caverns, the rock mass seepage is affected by the faults and the groundwater permeated down along the tangential fault plane. After the excavation of the caverns during the operation period, the groundwater is basically drained away and the underground caverns are mostly above the groundwater level. Thus, the calculation results of the engineering example verify the implicit composite method for the simulation of faults and drainage holes. This method can well meet the calculation demands of practical engineering.展开更多
Objective: To investigate the stress distribution to the mandible, with and without impacted third molars(IM3 s) at various orientations, resulting from a 2000-Newton impact force either from the anterior midline o...Objective: To investigate the stress distribution to the mandible, with and without impacted third molars(IM3 s) at various orientations, resulting from a 2000-Newton impact force either from the anterior midline or from the body of the mandible. Materials and methods: A 3 D mandibular virtual model from a healthy dentate patient was created and the mechanical properties of the mandible were categorized to 9 levels based on the Hounsfield unit measured from computed tomography(CT) images. Von Mises stress distributions to the mandibular angle and condylar areas from static impact forces(Load I-front blow and Load II left blow) were evaluated using finite element analysis(FEA). Six groups with IM3 were included: full horizontal bony, full vertical bony, full 450 mesioangular bony, partial horizontal bony, partial vertical, and partial 450 mesioangular bony impaction, and a baseline group with no third molars. Results: Von Mises stresses in the condyle and angle areas were higher for partially than for fully impacted third molars under both loading conditions, with partial horizontal IM3 showing the highest fracture risk. Stresses were higher on the contralateral than on the ipsilateral side. Under Load II, the angle area had the highest stress for various orientations of IM3 s. The condylar region had the highest stress when IM3 s were absent. Conclusions: High-impact forces are more likely to cause condylar rather than angular fracture when IM3 s are missing. The risk of mandibular fracture is higher for partially than fully impacted third molars, with the angulation of impaction having little effect on facture risk.展开更多
One of the factors that affect the parameters of an underground cable is earth return path impedance.Pollaczek developed a formula for the case of one-layer(homogenous) earth.But in practice the earth is composed of s...One of the factors that affect the parameters of an underground cable is earth return path impedance.Pollaczek developed a formula for the case of one-layer(homogenous) earth.But in practice the earth is composed of several layers.In this study we develop a new formula for earth return path impedance in the case of a three-layer earth.To check the accuracy of the obtained results,a comparison has been made with the finite element method(FEM).A comparison between the results of the Pollaczek formula and results of the obtained formula for a three-layer earth has been made,showing that the use of the Pollaczek formula instead of the actual formula can cause serious errors.展开更多
We design a channel-drop filter(CDF)with a linear gradient microcavity in a two-dimensional(2D)photonic crystal(PC).The model of three-port CDF with reflector is used to achieve high quality factor(Q-factor)and 100%ch...We design a channel-drop filter(CDF)with a linear gradient microcavity in a two-dimensional(2D)photonic crystal(PC).The model of three-port CDF with reflector is used to achieve high quality factor(Q-factor)and 100%channel-drop efficiency.The research indicates that adjusting the distance between reference plane and reflector can simultaneously influence the Q-factor due to coupling to a bus waveguide and the phase retardation occurring in the round trip between a microcavity and a reflector.The calculation results of 2D finite-difference time-domain(FDTD)method show that the designed filter can achieve the drop efficiency of 96.7%and ultra-high Q-factor with an ultra-small modal volume.展开更多
基金Projects 50874105 supported by the National Natural Science Foundation of China20070290532 by the Specialized Research Fund for Doctoral Program of Higher Education
文摘The application of a double-face reinforced retaining wall during road construction can reduce engineering costs, speed road paving and have a good influence on environment. An ABAQUS numerical model of a double-face reinforced retaining wall was built. The influence of surface subsidence induced by mining was considered. A physical model test was also performed in the laboratory on a reinforced retaining wall. The influence of subsidence induced by mining was observed. The numerical results match measurements in the laboratory very well. The vertical pressure on the base of the retaining wall, the horizontal displacement of the wall and the horizontal soil pressure acting on the wall were analyzed. The differential settlement of the reinforced belt and axial forces in the wall were also studied.
文摘Objective:To investigate the feasibility of a finite element model as an ideal research tool for human maxillofacial gunshot wounds.Methods:Mandible CT scan data on the Chinese Visible Human were imported into MIMICS software to obtain the surface mesh of the mandible.Then,these surface-meshed models were imported into ANSA software for automatic net generation.Elements and nodes were partitioned on the basis of the mesh to obtain a three-dimensional finite element model for the mandible with every internal parameter consistent with those of our previously developed model in the pig mandible.The finite element model was imported into LS-DYNA for computation.Finally,the LS-POST was used to complete the simulation and the measurements.Results:A three-dimensional finite element model was successfully established for gunshot wounds in the human mandible.The stress distribution and the degree of injury were simulated dynamically for shots from two types of projectiles in the mandible at one entry angle and at three impact velocities.Conclusion:Three-dimensional finite element models will become ideal research tools for treatment of ballistic wounds of the human maxillofacial region.Using this human mandibular model as a foundation,we will be able to successfully develop three-dimensional finite element models for human maxillofacial gunshot wounds.
基金Project 50574088 supported by the Nation Natural Science Foundation of China
文摘Patterns of ground movement and pore water pressure variation are obtained through a case study using a finite element method. With the progress of excavation, ground subsidence, ground inclination and horizontal displacement accelerates. Along the striking direction, a subsidence basin is formed on the ground surface induced by underground mining. The maximum subsidence is around 5.41m. The ratio of ground subsidence to the thickness of the coal seam is 1.08. The maximum inclination is 11.5 mm/m. The maximum horizontal displacement is 2.15 mm/m. At the time the coal has been excavated, the maximum pore water pressure reaches 25 kPa. In order to improve protection of structures lo- cated over the area with underground mining, the variation of additional stresses of a railway bridge induced by ground surface deformation is analyzed. The main effect of underground mining on the railway bridge is the tensile stress and the maximum value reaches as high as 4.29 MPa, which is greater than the concrete tensile strength.
基金Project(51471041)supported by the National Natural Science Foundation of China
文摘Four different routes of asymmetric reduction rolling were conducted on AZ31 magnesium alloy to investigate their effect on the microstructure evolution and mechanical properties. Route A is the forward rolling; while during routes B and C the sheets are rotated 180o in rolling direction and normal direction, respectively; route D is the unidirectional rolling. The strain states of rolled sheets were analyzed by the finite element method, while the microstructure and texture were observed using optical microscopy, X-ray diffraction and electron back-scattered diffraction techniques, and the mechanical properties were measured by tensile test. The results show that route D produced the largest effective strain. Compared with other samples, sample D exhibited a homogeneous microstructure with fine grains as well as a weak and tilted texture, in corresponding, it performed excellent tensile properties, which suggested that route D was an effective way to enhance the strength and plasticity of AZ31 sheet.
基金Project supported by the National Defense Laboratory Foundation (Grant No.51444020103QT0601)the Shanghai Leading Academic Discipline Project (Grant No.T0102)
文摘In this work, we treat scattering objects, water, surface and bottom in a truly unified manner in a parallel finitedifference time-domain (FDTD) scheme, which is suitable for distributed parallel computing in a message passing interface (MPI) programming environment. The algorithm is implemented on a cluster-based high performance computer system. Parallel computation is performed with different division methods in 2D and 3D situations. Based on analysis of main factors affecting the speedup rate and parallel efficiency, data communication is reduced by selecting a suitable scheme of task division. A desirable scheme is recommended, giving a higher speedup rate and better efficiency. The results indicate that the unified parallel FDTD algorithm provides a solution to the numerical computation of acoustic scattering.
文摘This study presents a reliable method for the semi-automatic generation of an FE model, which determines both geometrical data and bone properties from patient CT scans.3D FE analysis is one of the best approaches to predict the stress and strain distribution in complex bone structures, but its accuracy strongly depends on the precision of input information. In geometric reconstruction, various methods of image processing, geometric modeling and finite element analysis are combined and extended. Emphasis is given to the assignment of the material properties based on the density values computed from CT data. Through this technique, the model with high geometric and material similarities were generated in an easy way. Consequently, the patient-specific FE model from mandible CT data is realized also.
文摘In this study, we present a practical technique of transforming cross-hole EM data into the inter-well resistivity distribution. The a priori information constraint is incorporated into an iterative regularized inversion procedure and a variable roughness is added into the inversion process. Finite element approximation based on a two and a half-dimensional (2.5D) model has been developed for the forward problem and the "pseudo-forward" problem needed for constructing the sensitivity matrix and synthetic data set. The regularized least-squares inversion scheme, constrained with the a priori information obtained from well logs, was adopted to reconstruct the inter-well resistivity profile from two synthetic electromagnetic data sets and field data acquired in the Gudao Oil Field, East China. The partial derivatives of the sensitivity matrix were computed by the adjoint equation based on the reciprocity principle. Inversion results of the synthetic and field data examples suggest that our method is robust and stable in the presence of random noise in the field data and can be used for cross-hole EM field data interpretation.
文摘The groundwater flow characteristics of the Galma River Basin were simulated numerically by using the finite element method. The two-dimensional partial differential equation governing transient flow in an unconfined aquifer was modified to incorporate the effect of precipitation as a measurable source as it affects groundwater flow, such that for a given amount of precipitation over the basin, the flow of groundwater can be predicted at any point in the basin. With appropriate initial and boundary conditions, the modified equation was solved and the solution programmed for computer run. After calibration and verification, the borehole hydraulic data for the basin was used to predict flow due to groundwater hydraulic heads for 20 years. Findings revealed that there is a direct correlation of 0.79 and a strong linear relationship between simulated and observed hydraulic heads, and that data availability and choice of appropriate initial and boundary conditions are significant for good numerical modelling results. The contour plot of the hydraulic heads showed variation of heads from higher values at the upstream to lower values downstream, and groundwater flow follows the natural topography of the land from the upstream end of the basin towards the main streams and Galma River.
文摘With consideration of the special hydrogeological conditions and layout characteristics of the hydraulic structures, the seepage control measures of dam abutment and underground powerhouse on the right bank of JinPing-I hydropower station is drawn up. Based on the three dimensional finite element analysis of seepage control with dry area virtual flow constant mesh analysis method, the rationality of the seepage control measures of dam abutment and underground powerhouse has been verified and the key factors affecting the effect of seepage have been compared. In combination with the curtain of dam abutment, the curtain of underground powerhouse is reasonable. The results showed that the steel liner of penstock after the curtain is necessary.
基金supported by National Science Foundations of China (Grant Nos. 11001259,11031006)Croucher Foundation of Hong Kong Baptist University
文摘We introduce some ways to compute the lower and upper bounds of the Laplace eigenvalue problem.By using the special nonconforming finite elements,i.e.,enriched Crouzeix-Raviart element and extended Q1ro t,we get the lower bound of the eigenvalue.Additionally,we use conforming finite elements to do the postprocessing to get the upper bound of the eigenvalue,which only needs to solve the corresponding source problems and a small eigenvalue problem if higher order postprocessing method is implemented.Thus,we can obtain the lower and upper bounds of the eigenvalues simultaneously by solving eigenvalue problem only once.Some numerical results are also presented to demonstrate our theoretical analysis.
基金supported by the National Natural Science Foundation of China(Grant No.51178277)Program for New Century Excellent Talents in University(Grant No.NCET-12-1013)+1 种基金Program for Liaoning Excellent Talents in University(Grant No.LR2012018)the Shenyang City Science Foundation of China(Grant No.F14-192-4-00)
文摘Underground pipelines, on which a city relies for survival and development, have become an important part of lifeline engineering. Underground pipelines are utilized for conveying liquid, gas or loose solid, pipeline leakage and damage occasionally resulting from corrosion. Corrosion monitoring of underground pipelines is aimed at ensuring their normal operation and preventing loss of life and property. In this paper, a new method to monitor corrosion of pipelines has been proposed to solve the mentioned problem. Under the influence of internal pressure and corrosion, the pipeline wall becomes thinner and the circumferential deformation increases. The method is to indirectly investigate pipeline corrosion by monitoring the circumferential deformation. Numerical simulation confirms that the circumferential strain curve of the pipeline wall measured by using the proposed method to describe the corrosion is feasible. The proposed method provides a new way for real-time and long-term monitoring and management of underground pipelines.
基金supported by the National Key Basic Research Program of China(Grant No.2015CB057904)the Major Program of the National Natural Science Foundation of China(Grant No.91215301)+1 种基金the National Natural Science Foundation of China(Grant Nos.51279136&51209164)the Research Fund for the Doctoral Program of Higher Education of China(Grant No.20130141110015)
文摘Based on the basic principle of the finite element method, the implicit composite element method for numerical simulation of seepage in underground engineering is proposed. In the simulation, the faults and drainage holes are set implicitly in the model elements without adding additional elements. Elements containing fault or drainage-hole data are termed composite elements. Then, their information data in model could be obtained. By determining the osmotic transmission matrix of the composite elements, the permeability coefficient matrix is then obtained. The method was applied to the numerical simulation of the seepage field around the underground powerhouse of the Ganhe Pumping Station in Yunnan, China, using a compiled three-dimensional finite element method calculation program. The rock mass around the site includes two faults. The seepage field in the rock mass was analyzed at different stages of the engineering project. The results show that, before the excavation of the underground caverns, the rock mass seepage is affected by the faults and the groundwater permeated down along the tangential fault plane. After the excavation of the caverns during the operation period, the groundwater is basically drained away and the underground caverns are mostly above the groundwater level. Thus, the calculation results of the engineering example verify the implicit composite method for the simulation of faults and drainage holes. This method can well meet the calculation demands of practical engineering.
基金Project supported by the National Natural Science Foundation of China(Nos.51375453 and 51775506)the Natural Science Foundation of Zhejiang Province(No.LY18E050022),China
文摘Objective: To investigate the stress distribution to the mandible, with and without impacted third molars(IM3 s) at various orientations, resulting from a 2000-Newton impact force either from the anterior midline or from the body of the mandible. Materials and methods: A 3 D mandibular virtual model from a healthy dentate patient was created and the mechanical properties of the mandible were categorized to 9 levels based on the Hounsfield unit measured from computed tomography(CT) images. Von Mises stress distributions to the mandibular angle and condylar areas from static impact forces(Load I-front blow and Load II left blow) were evaluated using finite element analysis(FEA). Six groups with IM3 were included: full horizontal bony, full vertical bony, full 450 mesioangular bony, partial horizontal bony, partial vertical, and partial 450 mesioangular bony impaction, and a baseline group with no third molars. Results: Von Mises stresses in the condyle and angle areas were higher for partially than for fully impacted third molars under both loading conditions, with partial horizontal IM3 showing the highest fracture risk. Stresses were higher on the contralateral than on the ipsilateral side. Under Load II, the angle area had the highest stress for various orientations of IM3 s. The condylar region had the highest stress when IM3 s were absent. Conclusions: High-impact forces are more likely to cause condylar rather than angular fracture when IM3 s are missing. The risk of mandibular fracture is higher for partially than fully impacted third molars, with the angulation of impaction having little effect on facture risk.
文摘One of the factors that affect the parameters of an underground cable is earth return path impedance.Pollaczek developed a formula for the case of one-layer(homogenous) earth.But in practice the earth is composed of several layers.In this study we develop a new formula for earth return path impedance in the case of a three-layer earth.To check the accuracy of the obtained results,a comparison has been made with the finite element method(FEM).A comparison between the results of the Pollaczek formula and results of the obtained formula for a three-layer earth has been made,showing that the use of the Pollaczek formula instead of the actual formula can cause serious errors.
基金supported by the Natural Science Foundation of the Higher Education Institutions of Guangxi Province in China(No.201202ZD010)
文摘We design a channel-drop filter(CDF)with a linear gradient microcavity in a two-dimensional(2D)photonic crystal(PC).The model of three-port CDF with reflector is used to achieve high quality factor(Q-factor)and 100%channel-drop efficiency.The research indicates that adjusting the distance between reference plane and reflector can simultaneously influence the Q-factor due to coupling to a bus waveguide and the phase retardation occurring in the round trip between a microcavity and a reflector.The calculation results of 2D finite-difference time-domain(FDTD)method show that the designed filter can achieve the drop efficiency of 96.7%and ultra-high Q-factor with an ultra-small modal volume.