The dynamic reactive power compensation equipment in Jiuquan Wind Power Base of above 10 GW consists of three different types of compensation devices, including: static var generator (SVG), thyristor controlled com...The dynamic reactive power compensation equipment in Jiuquan Wind Power Base of above 10 GW consists of three different types of compensation devices, including: static var generator (SVG), thyristor controlled compensator (TGR) and magnetically controlled reactor (MGR). The lack of experimental verification of performance is not conducive to voltage/var management or full utilization of device capaci- ties. In order to solve the above problems, the compensation device performance test was performed. The test items and procedures were selected based on related national standards with the consideration for different grid structures and wind farm operation modes. The testing contents included dynamic regulating range, active power loss, dynamic response time, and harmonic voltage level. Three types of compensation devices installed in different wind farms, namely SVG, TCR and MCR, were chosen and tested. The performances were compared and analyzed according to the field test results.展开更多
This paper presents a powerful approach to find the optimal size and location of distributed generation units in a distribution system using GA (Genetic Optimization algorithm). It is proved that GA method is fast a...This paper presents a powerful approach to find the optimal size and location of distributed generation units in a distribution system using GA (Genetic Optimization algorithm). It is proved that GA method is fast and easy tool to enable the planners to select accurate and the optimum size of generators to improve the system voltage profile in addition to reduce the active and reactive power loss. GA fitness function is introduced including the active power losses, reactive power losses and the cumulative voltage deviation variables with selecting weight of each variable. GA fitness function is subjected to voltage constraints, active and reactive power losses constraints and DG size constraint.展开更多
文摘The dynamic reactive power compensation equipment in Jiuquan Wind Power Base of above 10 GW consists of three different types of compensation devices, including: static var generator (SVG), thyristor controlled compensator (TGR) and magnetically controlled reactor (MGR). The lack of experimental verification of performance is not conducive to voltage/var management or full utilization of device capaci- ties. In order to solve the above problems, the compensation device performance test was performed. The test items and procedures were selected based on related national standards with the consideration for different grid structures and wind farm operation modes. The testing contents included dynamic regulating range, active power loss, dynamic response time, and harmonic voltage level. Three types of compensation devices installed in different wind farms, namely SVG, TCR and MCR, were chosen and tested. The performances were compared and analyzed according to the field test results.
文摘This paper presents a powerful approach to find the optimal size and location of distributed generation units in a distribution system using GA (Genetic Optimization algorithm). It is proved that GA method is fast and easy tool to enable the planners to select accurate and the optimum size of generators to improve the system voltage profile in addition to reduce the active and reactive power loss. GA fitness function is introduced including the active power losses, reactive power losses and the cumulative voltage deviation variables with selecting weight of each variable. GA fitness function is subjected to voltage constraints, active and reactive power losses constraints and DG size constraint.