Thermal residual stresses in polycrystalline diamond compact(PDC)cutter arising from the difference in thermal expansion between the polycrystalline diamond(PCD)and the supporting tungsten carbide substrate after sint...Thermal residual stresses in polycrystalline diamond compact(PDC)cutter arising from the difference in thermal expansion between the polycrystalline diamond(PCD)and the supporting tungsten carbide substrate after sintering at high pressure and high temperature were investigated using finite element simulation,laboratory tests and theoretical analysis.The obtained results show that although compressive residual stresses exist both in the interface of PCD table and in the most region of PCD table surface, the tensile residual stress,which is a fatal shortage to PDC,can also occur near the outer diameter area of PCD table,and the maximum value is 690 MPa.Distribution of tensile stress in the PCD table is given through experimental results,which is well consistent with the numerical results.This finding may be significant in designing new PDC cutters with lower residual stress and high cutting behavior.展开更多
In order to found an applicable equation of consolidation for gassy muddy clay, an effective stress formula of gas-charged nearly-saturated soils was introduced. And then, a consolidation equation was derived. Subsequ...In order to found an applicable equation of consolidation for gassy muddy clay, an effective stress formula of gas-charged nearly-saturated soils was introduced. And then, a consolidation equation was derived. Subsequently, supposing soils were under tangential loading, the expressions of pore water pressure were presented. The analytic solution of pore water pressure was attempted to be validated by the measured values in a real embankment. The parameters in the expressions of pore water pressure were gotten by the method of trial. The result shows that the consolidation model is rational and the analytic solution of pore water pressure is correct. The following conclusions can be made: 1) the influence of bubbles on the compressibility of pore fluid should be considered; 2) the effective stress would be influenced by bubbles, and the consolidation would depend on the compressibility of soil skeleton: the softer the soils are, the more distinct the influence of bubbles is; for normal clay, the influence of bubbles on the effective stress may be commonly neglected.展开更多
Terzaghi had established soil mechanics as an academic scholarship due to the discovery of the principal of effective stress for saturated soils when he considered the consolidation theory of saturated clay. The reaso...Terzaghi had established soil mechanics as an academic scholarship due to the discovery of the principal of effective stress for saturated soils when he considered the consolidation theory of saturated clay. The reason of the existence of the effective stress is that soil particles and water are composited by incompressible solid and liquid. Although air is very compressible fluid, the principle of effective stress is also used in unsaturated soils in the resent developed numerical analyses. Schrefler's equation is most frequently used, but the effective stress is not verified by the experimental results. In this study, the equations for unsaturated soils proposed by Schrefler, Aitchison, Khalili and Khabbaz and Kohgo are compared with using the results of suction controlled consolidometer tests. As a result, the effective stress for unsaturated soils calculated by Schrefler's equation was average of them.展开更多
Ultrasonic wave testing was applied to investigate the quality and weathering status of rock specimens obtained in two borings situated in the Xishan Buddha rock slope in Taiyuan, China. This paper pays special attent...Ultrasonic wave testing was applied to investigate the quality and weathering status of rock specimens obtained in two borings situated in the Xishan Buddha rock slope in Taiyuan, China. This paper pays special attention to the distribution of bulk density, dynamic parameters and static parameters of rock specimens as well as the relationship between static and dynamic parameters. The results illustrate that the distribution of both parameters is identical along the depth of two drilled holes in the rock slope. When the hole depth increases, the density of rock mass, saturated compression strength and static elastic modulus, dynamic elastic modulus and wave velocity also show increase tendency. The weathering degree in the rock mass ranging from the surface of cliff to the depth of 2.5 m is the highest while the rock mass is unsalted and more rigid when the depth is larger than 3.0 m. The relationship between dynamic elastic modulus, sonic wave velocity and horizontal depth indicates that dynamic elastic modulus is more sensitive than sonic wave velocity. Conversely, by comparing quantity relationship between static elastic modulus and sonic wave velocity, it is found that the composition of rock has a great influence on the relationship between static and dynamic parameters, that is, inequality of rock composition will lead to dispersion and abnormality of the distribution of static and dynamic parameters.展开更多
Micropipette aspiration(MA) is widely applied in cell mechanics, however, at small deformations a common model corresponding to the MA is the half-space model wherein the finite cell size and cell compressibility are ...Micropipette aspiration(MA) is widely applied in cell mechanics, however, at small deformations a common model corresponding to the MA is the half-space model wherein the finite cell size and cell compressibility are neglected. This study extends the half-space model by accounting for the influence of cell geometry and compressibility(sphere model). Using a finite element analysis of cell aspiration into a micropipette, an elastic approximation formula of the aspirated length was derived for the sphere model. The approximation formula includes the geometry parameter of the sphere model(ζ = R/a, R is the radius of the cell, and a is the inner radius of the micropipette) and the Poisson's ratio v of the cell. The results indicate that the parameter and Poisson's ratio v markedly affect the aspirated length, particularly for small and v. When ζ→∞ and v→0.5,the approximation formula tends to the analytical solution for the half-space model. In the incompressible case(v = 0.5), within the general experimental range(ζ varying from 2 to 4), the difference between the analytical solution and the approximate one is significant, and is up to 29% of the approximation solution when ζ= 2. Additionally, parametere was introduced to evaluate the error of elastic moduli between the half-space model and sphere model. Based on the approximation formula, the ζ thresholds, beyond which e becomes larger than 10% and 20%, were derived.展开更多
基金Project(20070533113)supported by the Doctoral Foundation of Ministry of Education of China
文摘Thermal residual stresses in polycrystalline diamond compact(PDC)cutter arising from the difference in thermal expansion between the polycrystalline diamond(PCD)and the supporting tungsten carbide substrate after sintering at high pressure and high temperature were investigated using finite element simulation,laboratory tests and theoretical analysis.The obtained results show that although compressive residual stresses exist both in the interface of PCD table and in the most region of PCD table surface, the tensile residual stress,which is a fatal shortage to PDC,can also occur near the outer diameter area of PCD table,and the maximum value is 690 MPa.Distribution of tensile stress in the PCD table is given through experimental results,which is well consistent with the numerical results.This finding may be significant in designing new PDC cutters with lower residual stress and high cutting behavior.
基金Projects(51278462,51378469)supported by the National Natural Science Foundation of ChinaProject(2011B81005)supported by Ningbo Science and Technology Innovation Team,ChinaProject(2013A610202)supported by Ningbo Natural Science Foundation of China
文摘In order to found an applicable equation of consolidation for gassy muddy clay, an effective stress formula of gas-charged nearly-saturated soils was introduced. And then, a consolidation equation was derived. Subsequently, supposing soils were under tangential loading, the expressions of pore water pressure were presented. The analytic solution of pore water pressure was attempted to be validated by the measured values in a real embankment. The parameters in the expressions of pore water pressure were gotten by the method of trial. The result shows that the consolidation model is rational and the analytic solution of pore water pressure is correct. The following conclusions can be made: 1) the influence of bubbles on the compressibility of pore fluid should be considered; 2) the effective stress would be influenced by bubbles, and the consolidation would depend on the compressibility of soil skeleton: the softer the soils are, the more distinct the influence of bubbles is; for normal clay, the influence of bubbles on the effective stress may be commonly neglected.
文摘Terzaghi had established soil mechanics as an academic scholarship due to the discovery of the principal of effective stress for saturated soils when he considered the consolidation theory of saturated clay. The reason of the existence of the effective stress is that soil particles and water are composited by incompressible solid and liquid. Although air is very compressible fluid, the principle of effective stress is also used in unsaturated soils in the resent developed numerical analyses. Schrefler's equation is most frequently used, but the effective stress is not verified by the experimental results. In this study, the equations for unsaturated soils proposed by Schrefler, Aitchison, Khalili and Khabbaz and Kohgo are compared with using the results of suction controlled consolidometer tests. As a result, the effective stress for unsaturated soils calculated by Schrefler's equation was average of them.
文摘Ultrasonic wave testing was applied to investigate the quality and weathering status of rock specimens obtained in two borings situated in the Xishan Buddha rock slope in Taiyuan, China. This paper pays special attention to the distribution of bulk density, dynamic parameters and static parameters of rock specimens as well as the relationship between static and dynamic parameters. The results illustrate that the distribution of both parameters is identical along the depth of two drilled holes in the rock slope. When the hole depth increases, the density of rock mass, saturated compression strength and static elastic modulus, dynamic elastic modulus and wave velocity also show increase tendency. The weathering degree in the rock mass ranging from the surface of cliff to the depth of 2.5 m is the highest while the rock mass is unsalted and more rigid when the depth is larger than 3.0 m. The relationship between dynamic elastic modulus, sonic wave velocity and horizontal depth indicates that dynamic elastic modulus is more sensitive than sonic wave velocity. Conversely, by comparing quantity relationship between static elastic modulus and sonic wave velocity, it is found that the composition of rock has a great influence on the relationship between static and dynamic parameters, that is, inequality of rock composition will lead to dispersion and abnormality of the distribution of static and dynamic parameters.
基金supported by the National Natural Science Foundation of China(Grant No.11032008)the Youth Fund of Taiyuan University of Technology
文摘Micropipette aspiration(MA) is widely applied in cell mechanics, however, at small deformations a common model corresponding to the MA is the half-space model wherein the finite cell size and cell compressibility are neglected. This study extends the half-space model by accounting for the influence of cell geometry and compressibility(sphere model). Using a finite element analysis of cell aspiration into a micropipette, an elastic approximation formula of the aspirated length was derived for the sphere model. The approximation formula includes the geometry parameter of the sphere model(ζ = R/a, R is the radius of the cell, and a is the inner radius of the micropipette) and the Poisson's ratio v of the cell. The results indicate that the parameter and Poisson's ratio v markedly affect the aspirated length, particularly for small and v. When ζ→∞ and v→0.5,the approximation formula tends to the analytical solution for the half-space model. In the incompressible case(v = 0.5), within the general experimental range(ζ varying from 2 to 4), the difference between the analytical solution and the approximate one is significant, and is up to 29% of the approximation solution when ζ= 2. Additionally, parametere was introduced to evaluate the error of elastic moduli between the half-space model and sphere model. Based on the approximation formula, the ζ thresholds, beyond which e becomes larger than 10% and 20%, were derived.