期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
兼顾费用与公平的带通信开销的多有向无环图调度 被引量:3
1
作者 王宇新 曹仕杰 +2 位作者 郭禾 陈征 陈鑫 《计算机应用》 CSCD 北大核心 2015年第11期3017-3020,3025,共5页
针对云环境下多有向无环图(DAG)工作流的调度算法应考虑执行时间、费用开销、通信开销、公平性等多个指标的问题,在模型带通信开销的DAG(CA-DAG)的基础上结合公平性算法提出一种优化完成时间的后向求异(BD)原则与兼顾费用和公平的多DAG... 针对云环境下多有向无环图(DAG)工作流的调度算法应考虑执行时间、费用开销、通信开销、公平性等多个指标的问题,在模型带通信开销的DAG(CA-DAG)的基础上结合公平性算法提出一种优化完成时间的后向求异(BD)原则与兼顾费用和公平的多DAG调度策略CAFS。CAFS调度策略分为两个阶段:预调度阶段利用带通信开销的工作流费用优化(CACO)算法在考虑通信开销的同时求解所有任务的最优服务并优化费用,采用fairness算法得到较公平的调度顺序;调度阶段采用BD原则,根据在预调度阶段得出的调度顺序进一步优化整体的完成时间并执行调度。实验结果表明,CAFS调度算法具有较好的公平性,在不提高费用的基础上时间减少19.82%。 展开更多
关键词 有向无环图调度 通信开销 费用 公平 工作流
下载PDF
基于直接后继节点完成时间的异构调度算法 被引量:1
2
作者 王冠 王宇新 +2 位作者 陈鑫 王飞 郭禾 《计算机应用》 CSCD 北大核心 2017年第1期12-17,133,共7页
分布式环境下的异构计算系统(HCS)是大数据时代进行数据密集型计算不可或缺的,一个有效的任务调度算法可以提高整个异构计算系统的效率。在对异构环境下的任务调度进行有向无环图(DAG)建模的基础上,提出基于直接后继节点完成时间的异构... 分布式环境下的异构计算系统(HCS)是大数据时代进行数据密集型计算不可或缺的,一个有效的任务调度算法可以提高整个异构计算系统的效率。在对异构环境下的任务调度进行有向无环图(DAG)建模的基础上,提出基于直接后继节点完成时间的异构调度算法(HSFT)。在计算开销和通信开销差异度较大的异构环境中,考虑两者之间的平衡,采用更为合理的以计算均值与标准方差的乘积和通信权值与任务节点出度的比值作为优先权值计算方法,并在考虑最快完成时间(EFT)的基础上,将直接后继节点完成时间(SFT)用于处理器分配策略。实验结果表明,HSFT在不增加算法时间复杂度的情况下,比HEFT、SDBATS、PEFT等算法有更短的调度长度(makespan)、更优的调度长度比和效率。 展开更多
关键词 有向无环图调度 异构计算 任务优先级 直接后继节点 静态任务调度
下载PDF
轻量级大数据运算系统Helius 被引量:1
3
作者 丁梦苏 陈世敏 《计算机应用》 CSCD 北大核心 2017年第2期305-310,共6页
针对Spark数据集不可变,以及Java虚拟机(JVM)依赖环境引起的代码执行、内存管理、数据序列化/反序列化等开销过多的不足,采用C/C++语言,设计并实现了一种轻量级的大数据运算系统——Helius。Helius支持Spark的基本操作,同时允许数据集... 针对Spark数据集不可变,以及Java虚拟机(JVM)依赖环境引起的代码执行、内存管理、数据序列化/反序列化等开销过多的不足,采用C/C++语言,设计并实现了一种轻量级的大数据运算系统——Helius。Helius支持Spark的基本操作,同时允许数据集整体修改;同时,Helius利用C/C++优化内存管理和网络传输,并采用stateless worker机制简化分布式计算平台的容错恢复过程。实验结果显示:5次迭代中,Helius运行PageRank算法的时间仅为Spark的25.12%~53.14%,运行TPCH Q6的时间仅为Spark的57.37%;在PageRank迭代1次的基础上,运行在Helius系统下时,master节点IP接收和发送数据量约为运行于Spark系统的40%和15%,而且200 s的运行过程中,Helius占用的总内存约为Spark的25%。实验结果与分析表明,与Spark相比,Helius具有节约内存、不需要序列化和反序列化、减少网络交互以及容错简单等优点。 展开更多
关键词 内存计算 大数据运算 分布式计算 有向无环图调度 容错恢复
下载PDF
Time optimization for workflow scheduling based on the combination of task attributes
4
作者 Lu Ruiqi Zhu Chenyan +2 位作者 Cai Hailin Zhou Jiawei Jiang Junqiang 《Journal of Southeast University(English Edition)》 EI CAS 2020年第4期399-406,共8页
In order to reduce the scheduling makespan of a workflow,three list scheduling algorithms,namely,level and out-degree earliest-finish-time(LOEFT),level heterogeneous selection value(LHSV),and heterogeneous priority ea... In order to reduce the scheduling makespan of a workflow,three list scheduling algorithms,namely,level and out-degree earliest-finish-time(LOEFT),level heterogeneous selection value(LHSV),and heterogeneous priority earliest-finish-time(HPEFT)are proposed.The main idea hidden behind these algorithms is to adopt task depth,combined with task out-degree for the accurate analysis of task prioritization and precise processor allocation to achieve time optimization.Each algorithm is divided into three stages:task levelization,task prioritization,and processor allocation.In task levelization,the workflow is divided into several independent task sets on the basis of task depth.In task prioritization,the heterogeneous priority ranking value(HPRV)of the task is calculated using task out-degree,and a non-increasing ranking queue is generated on the basis of HPRV.In processor allocation,the sorted tasks are assigned one by one to the processor to minimize makespan and complete the task-processor mapping.Simulation experiments through practical applications and stochastic workflows confirm that the three algorithms can effectively shorten the workflow makespan,and the LOEFT algorithm performs the best,and it can be concluded that task depth combined with out-degree is an effective means of reducing completion time. 展开更多
关键词 directed acyclic graph workflow scheduling task depth task out-degree list heuristic
下载PDF
Energy-aware scheduling with reconstruction and frequency equalization on heterogeneous systems
5
作者 Yong-xing LIU Ken-li LI +1 位作者 Zhuo TANG Ke-qin LI 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2015年第7期519-531,共13页
With the increasing energy consumption of computing systems and the growing advocacy for green computing, energy efficiency has become one of the critical challenges in high-performance heterogeneous computing systems... With the increasing energy consumption of computing systems and the growing advocacy for green computing, energy efficiency has become one of the critical challenges in high-performance heterogeneous computing systems. Energy consumption can be reduced by not only hardware design but also software design. In this paper, we propose an energy-aware scheduling algorithm with equalized frequency, called EASEF, for parallel applications on heterogeneous computing systems. The EASEF approach aims to minimize the finish time and overall energy consumption. First, EASEF extracts the set of paths from an application. Then, it reconstructs the application based on the extracted set of paths to achieve a reasonable schedule. Finally, it adopts a progressive way to equalize the frequency of tasks to reduce the total energy consumption of systems. Randomly generated applications and two real-world applications are examined in our experiments. Experimental results show that the EASEF algorithm outperforms two existing algorithms in terms of makespan and energy consumption. 展开更多
关键词 Directed acyclic graph Dynamic voltage scaling Energy aware Heterogeneous systems Taskscheduling
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部