Generally, FD coefficients can be obtained by using Taylor series expansion (TE) or optimization methods to minimize the dispersion error. However, the TE-based FD method only achieves high modeling precision over a...Generally, FD coefficients can be obtained by using Taylor series expansion (TE) or optimization methods to minimize the dispersion error. However, the TE-based FD method only achieves high modeling precision over a limited range of wavenumbers, and produces large numerical dispersion beyond this range. The optimal FD scheme based on least squares (LS) can guarantee high precision over a larger range of wavenumbers and obtain the best optimization solution at small computational cost. We extend the LS-based optimal FD scheme from two-dimensional (2D) forward modeling to three-dimensional (3D) and develop a 3D acoustic optimal FD method with high efficiency, wide range of high accuracy and adaptability to parallel computing. Dispersion analysis and forward modeling demonstrate that the developed FD method suppresses numerical dispersion. Finally, we use the developed FD method to source wavefield extrapolation and receiver wavefield extrapolation in 3D RTM. To decrease the computation time and storage requirements, the 3D RTM is implemented by combining the efficient boundary storage with checkpointing strategies on GPU. 3D RTM imaging results suggest that the 3D optimal FD method has higher precision than conventional methods.展开更多
A model of quantum thermoacoustic refrigeration micro-cycle(QTARMC)is established in which heat leakage is considered.A single particle contained in a one-dimensional harmonic potential well is studied,and the system ...A model of quantum thermoacoustic refrigeration micro-cycle(QTARMC)is established in which heat leakage is considered.A single particle contained in a one-dimensional harmonic potential well is studied,and the system consists of countless replicas.Each particle is confined in its own potential well,whose occupation probabilities can be expressed by the thermal equilibrium Gibbs distributions.Based on the Schrodinger equation,the expressions of coefficient of performance(COP)and cooling rate for the refrigerator are obtained.Effects of heat leakage on the optimal performance are discussed.The optimal performance region of the refrigeration cycle is obtained by the using ofΩobjective function.The results obtained can enrich the thermoacoustic theory and expand the application of quantum thermodynamics.展开更多
An approach based on the finite element analysis was introduced to improve low-frequency sound field. The optimized scatters on the wall redistribute the modes of the room and provide effective diffusion of sound fiel...An approach based on the finite element analysis was introduced to improve low-frequency sound field. The optimized scatters on the wall redistribute the modes of the room and provide effective diffusion of sound field. The obtained through a 1:5 scaled set up. The results show that the optimized treatment has a positive effect on sound field and the improvement is obvious.展开更多
Attenuation of noise is a persistent problem in seismic exploration. The authors use conventional denoising method to remove noise which may cause vibration near the discontinuity called pseudo-Gibbs artifact.In order...Attenuation of noise is a persistent problem in seismic exploration. The authors use conventional denoising method to remove noise which may cause vibration near the discontinuity called pseudo-Gibbs artifact.In order to remove the artifact,the study proposed a method combining the seislet transform and total variation minimization. Firstly,the data are converted into the seislet transform domain. Secondly,the hard threshold was used for eliminating the noise and keep useful signal,which is the initial input for the next step. Finally,total variation minimization dealed with denoised data to recover boundary information and further eliminated the noise. Synthetic data examples show that the method has feasibility in eliminating random noise and protecting detailed signal,and also shows better results than the classic f-x deconvolution. The field data example also shows effective in practice. It can remove the noise and preserve the discontinuity signal at the same time.展开更多
The temperature and LO phonon effects of the bipolaron in polar semiconductor quantum dots (QDs) are studied by using the Tokuda modified linear-combination operator method and the Lee-Low-Pines variational method. ...The temperature and LO phonon effects of the bipolaron in polar semiconductor quantum dots (QDs) are studied by using the Tokuda modified linear-combination operator method and the Lee-Low-Pines variational method. The expressions for the mean number ofLO phonons and the effective mass of the bipolaron are derived. Numerical results show that the mean number of LO phonons of the bipolaron decreases with increasing the temperature and the relative distance r between two electrons, but increases with increasing the electron-phonon coupling strength a The effective mass of the bipolaron M* increases rapidly with increasing the relative distance r between two electrons when r is smaller, and it reaches a maximum at r ≈ 4.05rp, while after that, 34* decreases slowly with increasing r. The effective mass of the bipolaron M' decreases with increasing the temperature. The electron-phonon coupling strength a markedly influences the changes of mean number of LO phonons and the effective mass M* with the relative distance r and the temperature parameter y.展开更多
基金supported by the National Natural Science Foundation of China(No.41474110)Shell Ph.D. Scholarship to support excellence in geophysical research
文摘Generally, FD coefficients can be obtained by using Taylor series expansion (TE) or optimization methods to minimize the dispersion error. However, the TE-based FD method only achieves high modeling precision over a limited range of wavenumbers, and produces large numerical dispersion beyond this range. The optimal FD scheme based on least squares (LS) can guarantee high precision over a larger range of wavenumbers and obtain the best optimization solution at small computational cost. We extend the LS-based optimal FD scheme from two-dimensional (2D) forward modeling to three-dimensional (3D) and develop a 3D acoustic optimal FD method with high efficiency, wide range of high accuracy and adaptability to parallel computing. Dispersion analysis and forward modeling demonstrate that the developed FD method suppresses numerical dispersion. Finally, we use the developed FD method to source wavefield extrapolation and receiver wavefield extrapolation in 3D RTM. To decrease the computation time and storage requirements, the 3D RTM is implemented by combining the efficient boundary storage with checkpointing strategies on GPU. 3D RTM imaging results suggest that the 3D optimal FD method has higher precision than conventional methods.
基金Project(51176143)supported by the National Natural Science Foundation of ChinaProject(K201919)supported by the Scientific Research Foundation of Wuhan Institute of TechnologyChina。
文摘A model of quantum thermoacoustic refrigeration micro-cycle(QTARMC)is established in which heat leakage is considered.A single particle contained in a one-dimensional harmonic potential well is studied,and the system consists of countless replicas.Each particle is confined in its own potential well,whose occupation probabilities can be expressed by the thermal equilibrium Gibbs distributions.Based on the Schrodinger equation,the expressions of coefficient of performance(COP)and cooling rate for the refrigerator are obtained.Effects of heat leakage on the optimal performance are discussed.The optimal performance region of the refrigeration cycle is obtained by the using ofΩobjective function.The results obtained can enrich the thermoacoustic theory and expand the application of quantum thermodynamics.
基金Project 10474046 supported by National Natural Science Foundation of China
文摘An approach based on the finite element analysis was introduced to improve low-frequency sound field. The optimized scatters on the wall redistribute the modes of the room and provide effective diffusion of sound field. The obtained through a 1:5 scaled set up. The results show that the optimized treatment has a positive effect on sound field and the improvement is obvious.
文摘Attenuation of noise is a persistent problem in seismic exploration. The authors use conventional denoising method to remove noise which may cause vibration near the discontinuity called pseudo-Gibbs artifact.In order to remove the artifact,the study proposed a method combining the seislet transform and total variation minimization. Firstly,the data are converted into the seislet transform domain. Secondly,the hard threshold was used for eliminating the noise and keep useful signal,which is the initial input for the next step. Finally,total variation minimization dealed with denoised data to recover boundary information and further eliminated the noise. Synthetic data examples show that the method has feasibility in eliminating random noise and protecting detailed signal,and also shows better results than the classic f-x deconvolution. The field data example also shows effective in practice. It can remove the noise and preserve the discontinuity signal at the same time.
基金supported by the Science and Technology Development Plan of Qinhuangdao(No.201101A027)
文摘The temperature and LO phonon effects of the bipolaron in polar semiconductor quantum dots (QDs) are studied by using the Tokuda modified linear-combination operator method and the Lee-Low-Pines variational method. The expressions for the mean number ofLO phonons and the effective mass of the bipolaron are derived. Numerical results show that the mean number of LO phonons of the bipolaron decreases with increasing the temperature and the relative distance r between two electrons, but increases with increasing the electron-phonon coupling strength a The effective mass of the bipolaron M* increases rapidly with increasing the relative distance r between two electrons when r is smaller, and it reaches a maximum at r ≈ 4.05rp, while after that, 34* decreases slowly with increasing r. The effective mass of the bipolaron M' decreases with increasing the temperature. The electron-phonon coupling strength a markedly influences the changes of mean number of LO phonons and the effective mass M* with the relative distance r and the temperature parameter y.