This paper presents a theoretical method for predicting the effective diffusion coefficient of macromolecules in the microporous membrfines in view of the effects of molecular dimension and configuration. On the basi...This paper presents a theoretical method for predicting the effective diffusion coefficient of macromolecules in the microporous membrfines in view of the effects of molecular dimension and configuration. On the basis of the hindered diffusion theory of spherical neutral macromolecules in a micropore of a long cylinder, the effects of molecular dimension and configuration are studied by defining two molecular dimensions:the mean projected radius to predict the concentration partition and the ' hydrodynamically equivalent sphere' radius to evaluate the hydrodynamic reverse drag force. The quantitative comparison shows that the effective diffusion coefficients for different macromolecules predicted by the present method are more consistent with the available published experimental data.展开更多
Hierarchically ordered macro-mesoporous TiO2 films (Ti-Ma-Me) were fabricated on fluorine-doped tin oxide (FTO) substrates through the confinement self-assembly method. The prepared Ti-Ma-Me possesses periodically ord...Hierarchically ordered macro-mesoporous TiO2 films (Ti-Ma-Me) were fabricated on fluorine-doped tin oxide (FTO) substrates through the confinement self-assembly method. The prepared Ti-Ma-Me possesses periodically ordered structure and a large specific surface area, which was applied as an interfacial layer between the nanocrystalline TiO2 film (P25-TiO2) and FTO electrode in the dye-sensitized solar cell (DSSC). The introduction of a Ti-Ma-Me interfacial layer increased the shortcircuit current density (Jsc) from 7.49 to 10.65 mA/cm2 and the open-circuit voltage (Voc) from 0.65 to 0.70 V as the result of its improved light harvesting efficiency by allowing for the high roughness factor and enhanced multiple internal reflection or scattering as well as reducing the back-transport reaction by blocking direct contact between the electrolyte and FTO electrode. Therefore, the photovoltaic conversion efficiency (η) was improved by 83% from 3.04% to 5.55%, as compared to a device using a bare P25 TiO2 photoanode.展开更多
文摘This paper presents a theoretical method for predicting the effective diffusion coefficient of macromolecules in the microporous membrfines in view of the effects of molecular dimension and configuration. On the basis of the hindered diffusion theory of spherical neutral macromolecules in a micropore of a long cylinder, the effects of molecular dimension and configuration are studied by defining two molecular dimensions:the mean projected radius to predict the concentration partition and the ' hydrodynamically equivalent sphere' radius to evaluate the hydrodynamic reverse drag force. The quantitative comparison shows that the effective diffusion coefficients for different macromolecules predicted by the present method are more consistent with the available published experimental data.
基金supported by the National Natural Science Foundation of China (20971125, 21031005, 21050110428 & 21006116)Beijing Municipal Natural Science Foundation (2082022)+2 种基金the Foundation for State Key Laboratory of Multi-phase Complex Systems (MPCS-2011-D-15)State Key Laboratory of Biochemical Engineering (2010KF-09)the CAS Research Fellowship for International Young Scientists (2010Y1GB5)
文摘Hierarchically ordered macro-mesoporous TiO2 films (Ti-Ma-Me) were fabricated on fluorine-doped tin oxide (FTO) substrates through the confinement self-assembly method. The prepared Ti-Ma-Me possesses periodically ordered structure and a large specific surface area, which was applied as an interfacial layer between the nanocrystalline TiO2 film (P25-TiO2) and FTO electrode in the dye-sensitized solar cell (DSSC). The introduction of a Ti-Ma-Me interfacial layer increased the shortcircuit current density (Jsc) from 7.49 to 10.65 mA/cm2 and the open-circuit voltage (Voc) from 0.65 to 0.70 V as the result of its improved light harvesting efficiency by allowing for the high roughness factor and enhanced multiple internal reflection or scattering as well as reducing the back-transport reaction by blocking direct contact between the electrolyte and FTO electrode. Therefore, the photovoltaic conversion efficiency (η) was improved by 83% from 3.04% to 5.55%, as compared to a device using a bare P25 TiO2 photoanode.