The Fe-Ti binary system was re-assessed using the CALPHAD method in order to improve the capability of being extrapolated to a ternary or higher-order system. Compared with previous assessments, the main focus was put...The Fe-Ti binary system was re-assessed using the CALPHAD method in order to improve the capability of being extrapolated to a ternary or higher-order system. Compared with previous assessments, the main focus was put on the thermodynamic description of the two intermetallic compounds Fe2Ti and FeTi. The C14_Laves phase Fe2Ti was described by the two-sublattice model, which is widely used at present. By checking the homogeneity range on the boundary of the ternary systems involving the binary, the phase boundary of this compound was further confirmed. The FeTi phase with a BCC_B2 crystal structure was treated as the ordered phase of the BCC_A2 phase and a unified Gibbs energy function was used to describe both the ordered and disordered phases. Reproduction of the specific heat capacities of these compounds was another aspect paid particular attention to. Comprehensive comparisons of the calculated and experimental results regarding the phase diagram and thermodynamic properties show a good agreement between them and prove the validity of the present thermodynamic description.展开更多
The effects of Mo addition on microstructures,phase relationships,order–disorder phase-transition temperatures and room-temperature mechanical properties of Fe50Al50-nMon alloys(n=1,3,5,7,and 9,mole fraction,%)were i...The effects of Mo addition on microstructures,phase relationships,order–disorder phase-transition temperatures and room-temperature mechanical properties of Fe50Al50-nMon alloys(n=1,3,5,7,and 9,mole fraction,%)were investigated after solidification and heat treatment.Structural characterization of the samples was performed via X-ray diffraction(XRD),scanning electron microscopy(SEM)and differential scanning calorimetry.Room-temperature mechanical properties were investigated by conducting compression and microhardness tests.Mo3Al particles precipitated in all alloys because of the limited solid solubility of Mo in the Fe-Al-based phases.The as-cast Fe50Al50-nMon alloys exhibited brittle behavior with high yield strength and limited fracture strain at room temperature.Compared with the as-cast alloys,all the heat-treated alloys except for the Fe50Al41Mo9 alloy exhibited enhanced mechanical properties at room temperature.The heat-treated Fe50Al43Mo7 alloy exhibited the highest fracture strain and compressive strength of 25.4%and 2.3 GPa,respectively.展开更多
基金Project (IP08-092009) supported by Sino Swiss Science and Technology Cooperation (SSSTC)Project (50971136) supported by the National Natural Science Foundation of ChinaProject (1343-71134001013) supported by the Scholarship Award for Excellent Doctoral Student granted by Ministry of Education of China
文摘The Fe-Ti binary system was re-assessed using the CALPHAD method in order to improve the capability of being extrapolated to a ternary or higher-order system. Compared with previous assessments, the main focus was put on the thermodynamic description of the two intermetallic compounds Fe2Ti and FeTi. The C14_Laves phase Fe2Ti was described by the two-sublattice model, which is widely used at present. By checking the homogeneity range on the boundary of the ternary systems involving the binary, the phase boundary of this compound was further confirmed. The FeTi phase with a BCC_B2 crystal structure was treated as the ordered phase of the BCC_A2 phase and a unified Gibbs energy function was used to describe both the ordered and disordered phases. Reproduction of the specific heat capacities of these compounds was another aspect paid particular attention to. Comprehensive comparisons of the calculated and experimental results regarding the phase diagram and thermodynamic properties show a good agreement between them and prove the validity of the present thermodynamic description.
基金OYP Program at Middle East Technical University and The Scientific and Technological Research Council of Turkey,TUBITAKNational Scholarship Programme for PhD Students
文摘The effects of Mo addition on microstructures,phase relationships,order–disorder phase-transition temperatures and room-temperature mechanical properties of Fe50Al50-nMon alloys(n=1,3,5,7,and 9,mole fraction,%)were investigated after solidification and heat treatment.Structural characterization of the samples was performed via X-ray diffraction(XRD),scanning electron microscopy(SEM)and differential scanning calorimetry.Room-temperature mechanical properties were investigated by conducting compression and microhardness tests.Mo3Al particles precipitated in all alloys because of the limited solid solubility of Mo in the Fe-Al-based phases.The as-cast Fe50Al50-nMon alloys exhibited brittle behavior with high yield strength and limited fracture strain at room temperature.Compared with the as-cast alloys,all the heat-treated alloys except for the Fe50Al41Mo9 alloy exhibited enhanced mechanical properties at room temperature.The heat-treated Fe50Al43Mo7 alloy exhibited the highest fracture strain and compressive strength of 25.4%and 2.3 GPa,respectively.