Faced with hundreds of thousands of news articles in the news websites,it is difficult for users to find the news articles they are interested in.Therefore,various news recommender systems were built.In the news recom...Faced with hundreds of thousands of news articles in the news websites,it is difficult for users to find the news articles they are interested in.Therefore,various news recommender systems were built.In the news recommendation,these news articles read by a user is typically in the form of a time sequence.However,traditional news recommendation algorithms rarely consider the time sequence characteristic of user browsing behaviors.Therefore,the performance of traditional news recommendation algorithms is not good enough in predicting the next news article which a user will read.To solve this problem,this paper proposes a time-ordered collaborative filtering recommendation algorithm(TOCF),which takes the time sequence characteristic of user behaviors into account.Besides,a new method to compute the similarity among different users,named time-dependent similarity,is proposed.To demonstrate the efficiency of our solution,extensive experiments are conducted along with detailed performance analysis.展开更多
The computational grid provides a promising platform for the deployment of various high-performance computing applications. A grid system consists of heterogeneous resource domains, while the computational tasks of fi...The computational grid provides a promising platform for the deployment of various high-performance computing applications. A grid system consists of heterogeneous resource domains, while the computational tasks of finite element analysis may differ in demand of computing power. The cost-effective utilization of resources in the grid can be obtained through scheduling tasks to optimal resource domains. Firstly, a cost-effective scheduling strategy is presented for finite element applications. Secondly, aiming at the conjugate gradient solver stemming from finite element analysis, a performance evaluation formula is presented for determining optimal resouree domains, which is derived from phase parallel model and takes the heterogeneous characteristic of resource domains into account. Finally, experimental results show that the presented formula delivers a good estimation of the actual execution time, and indicate that the presented formula can be used to determine optimal resource domains in the grid environment.展开更多
Modeling pavement granular materials have played through an experimental or numerical approach to predict the a significant role in pavement design procedure. Modeling can be granular behavior during cyclic loading. C...Modeling pavement granular materials have played through an experimental or numerical approach to predict the a significant role in pavement design procedure. Modeling can be granular behavior during cyclic loading. Current design process in western Australia is based on linear elastic analysis of layers. The analysis is largely performed through a well-known program CIRCLY which is applied to model bound pavement material behavior. The KENLAYER is one of the common pavement software models used for pavement design in the United State which performs non-linear analysis for granular materials. Alternatively, a general finite element program such as ABAQUS can be used to model the complicated behavior ofmultilayer granular materials. This study is to compare results of numerical modeling with these three programs on a sample constructed pavement model. Moreover, a parametric study on the effects of Poisson ratio over the surface deflection of the flexible pavement has been conducted. It is found that increase in Poisson ratio of asphalt layer will increase the surface deflection while the increase in Poisson ratio of granular layers decreases the surface deflection.展开更多
基金supported by the Natural Science Foundation of China(No.61170174, 61370205)Tianjin Training plan of University Innovation Team(No.TD12-5016)
文摘Faced with hundreds of thousands of news articles in the news websites,it is difficult for users to find the news articles they are interested in.Therefore,various news recommender systems were built.In the news recommendation,these news articles read by a user is typically in the form of a time sequence.However,traditional news recommendation algorithms rarely consider the time sequence characteristic of user browsing behaviors.Therefore,the performance of traditional news recommendation algorithms is not good enough in predicting the next news article which a user will read.To solve this problem,this paper proposes a time-ordered collaborative filtering recommendation algorithm(TOCF),which takes the time sequence characteristic of user behaviors into account.Besides,a new method to compute the similarity among different users,named time-dependent similarity,is proposed.To demonstrate the efficiency of our solution,extensive experiments are conducted along with detailed performance analysis.
文摘The computational grid provides a promising platform for the deployment of various high-performance computing applications. A grid system consists of heterogeneous resource domains, while the computational tasks of finite element analysis may differ in demand of computing power. The cost-effective utilization of resources in the grid can be obtained through scheduling tasks to optimal resource domains. Firstly, a cost-effective scheduling strategy is presented for finite element applications. Secondly, aiming at the conjugate gradient solver stemming from finite element analysis, a performance evaluation formula is presented for determining optimal resouree domains, which is derived from phase parallel model and takes the heterogeneous characteristic of resource domains into account. Finally, experimental results show that the presented formula delivers a good estimation of the actual execution time, and indicate that the presented formula can be used to determine optimal resource domains in the grid environment.
文摘Modeling pavement granular materials have played through an experimental or numerical approach to predict the a significant role in pavement design procedure. Modeling can be granular behavior during cyclic loading. Current design process in western Australia is based on linear elastic analysis of layers. The analysis is largely performed through a well-known program CIRCLY which is applied to model bound pavement material behavior. The KENLAYER is one of the common pavement software models used for pavement design in the United State which performs non-linear analysis for granular materials. Alternatively, a general finite element program such as ABAQUS can be used to model the complicated behavior ofmultilayer granular materials. This study is to compare results of numerical modeling with these three programs on a sample constructed pavement model. Moreover, a parametric study on the effects of Poisson ratio over the surface deflection of the flexible pavement has been conducted. It is found that increase in Poisson ratio of asphalt layer will increase the surface deflection while the increase in Poisson ratio of granular layers decreases the surface deflection.