In Gengcun Colliery, Yima Coal Group Co. Ltd.the characteristics of the gateways of thick coal seam and the coal seam is with fully mechanized sublevel caving mining are that the thickness of roof coal seam of gateway...In Gengcun Colliery, Yima Coal Group Co. Ltd.the characteristics of the gateways of thick coal seam and the coal seam is with fully mechanized sublevel caving mining are that the thickness of roof coal seam of gateways is larger, their surrounding rocks are the whole-coal mass and the coal seam is prone to Spontaneous Combustion. With the natural equilibrium arch theory, the reasonable adjacent distance of No.11 mine-type metal supports was calculated in trapezoidal gateways based on these characteristics. Then, in-situ supporting experiments were carried out. The results indicate that under the action of virgin rock stress, the width of broken rocks zone of surrounding rocks is 1.7–2.0 m in return heading and 1.1–1.3 m in going headway. And their surrounding rocks belong to the Ⅳ-type soften rock and the Ⅲ-type common surrounding rock respectively. Therefore, under the movable abutment pressure, the gateways deformation is serious. It is suggested that the designed gateways have to use pre-broadened cross section to suit their deformation. At the same time, the accumulated water on gateway floor must be drained in time. These measures were taken in the 1302 and 1304 coal faces in Gengcun Colliery, and the satisfactory results have been obtained.展开更多
Common tools based on landmarks in medical image elastic registration are Thin Plate Spline (TPS) and Compact Support Radial Basis Function (CSRBF). TPS forces the corresponding landmarks to exactly match each other a...Common tools based on landmarks in medical image elastic registration are Thin Plate Spline (TPS) and Compact Support Radial Basis Function (CSRBF). TPS forces the corresponding landmarks to exactly match each other and minimizes the bending energy of the whole image. However, in real application, such scheme would deform the image globally when deformation is only local. CSRBF needs manually determine the support size, although its deformation is limited local. Therefore, to limit the effect of the deformation, new Compact Support Thin Plate Spline algorithm (CSTPS) is approached, analyzed and applied. Such new approach gains optimal mutual information, which shows its registration result satisfactory. The experiments also show it can apply in both local and global elastic registration.展开更多
Rotating systems have many applications in wide-ranging industrial contexts. The breakdown of this equipment results in economic wastes and leads to dangerous situations. To avoid such problems is very important, and ...Rotating systems have many applications in wide-ranging industrial contexts. The breakdown of this equipment results in economic wastes and leads to dangerous situations. To avoid such problems is very important, and it can be done through tools that inform about the existence of faults, as well as, about their progress in time. A review of the modeling process used for rotor-support-structure shows that the finite element method is the maj or method employed. In this paper, with the aid of well defined theoretical models, obtained using the finite element technique, and the state observer method for the identification and location of faults, it is possible to monitor the parameters of a rotor-support-structure system, including the foundation effects. In order to improve safety, these parameters must be supervised in case of the occurrence of failures or faults. The state observers are designed using Linear Matrix Inequalities (LMIs). Finally, experimental results (using for this a rotation system in the mechanical vibrations laboratory at Ilha Solteira's Mechanical Engineering Department) demonstrate the effectiveness of the methodology developed.展开更多
This vertically self‐pillared(VSP)structure extends the application range of traditional porous materials with facile mass/ion transport and enhanced reaction kinetics.Here,we prepare a single crystal metal‐organic ...This vertically self‐pillared(VSP)structure extends the application range of traditional porous materials with facile mass/ion transport and enhanced reaction kinetics.Here,we prepare a single crystal metal‐organic framework(MOF),employing the ZIF‐67 structure as a proof of concept,which is constructed by vertically self‐pillared nanosheets(VSP‐MOF).We further converted VSP‐MOF into VSP‐cobalt sulfide(VSP‐CoS2)through a sulfidation process.Catalysis plays an important role in almost all battery technologies;for metallic batteries,lithium anodes exhibit a high theoretical specific capacity,low density,and low redox potential.However,during the half‐cell reaction(Li++e=Li),uncontrolled dendritic Li penetrates the separator and solid electrolyte interphase layer.When employed as a composite scaffold for lithium metal deposition,there are many advantage to using this framework:1)the VSP‐CoS2 substrate provides a high specific surface area to dissipate the ion flux and mass transfer and acts as a pre‐catalyst,2)the catalytic Co center favors the charge transfer process and preferentially binds the Li+with the enhanced electrical fields,and 3)the VSP structure guides the metallic propagation along the nanosheet 2D orientation without the protrusive dendrites.All these features enable the VSP structure in metallic batteries with encouraging performances.展开更多
Stability tests of three plate girders laterally unbraced on both ends, which were scale models of real plate girders in heavy plants for tower-type boilers, are presented and investigated. The applicability of code p...Stability tests of three plate girders laterally unbraced on both ends, which were scale models of real plate girders in heavy plants for tower-type boilers, are presented and investigated. The applicability of code provisions in ANSI/AISC 360-10 about such members is discussed. A nonlinear finite element analysis was carried out, considering the combined effects of plasticity, residual stress and geometrical imperfections, to simulate the stability behavior of the specimens. The reliability of the numerical model was validated by comparisons with experimental results. The results show that stability behavior of plate girders with laterally unbraced ends is widely different from that of typical simply supported thin-walled beams. The structural response is also sensitive to initial geometrical imperfections of this objects. The model is used to improve the mechanical design of transverse stiffeners over the supports. The positive effect and offsetting influence of imperfections of thicker and additional transverse stiffeners on overall stability behavior are highlighted. A few suggestions for design process are also given.展开更多
基金Project 0511051900 supported by Natural Science Foundation of Henan Province
文摘In Gengcun Colliery, Yima Coal Group Co. Ltd.the characteristics of the gateways of thick coal seam and the coal seam is with fully mechanized sublevel caving mining are that the thickness of roof coal seam of gateways is larger, their surrounding rocks are the whole-coal mass and the coal seam is prone to Spontaneous Combustion. With the natural equilibrium arch theory, the reasonable adjacent distance of No.11 mine-type metal supports was calculated in trapezoidal gateways based on these characteristics. Then, in-situ supporting experiments were carried out. The results indicate that under the action of virgin rock stress, the width of broken rocks zone of surrounding rocks is 1.7–2.0 m in return heading and 1.1–1.3 m in going headway. And their surrounding rocks belong to the Ⅳ-type soften rock and the Ⅲ-type common surrounding rock respectively. Therefore, under the movable abutment pressure, the gateways deformation is serious. It is suggested that the designed gateways have to use pre-broadened cross section to suit their deformation. At the same time, the accumulated water on gateway floor must be drained in time. These measures were taken in the 1302 and 1304 coal faces in Gengcun Colliery, and the satisfactory results have been obtained.
基金the National Natural Science Foundation of China (No.60572101) the Natural Science Foundation of Guangdong Province (No.31789).
文摘Common tools based on landmarks in medical image elastic registration are Thin Plate Spline (TPS) and Compact Support Radial Basis Function (CSRBF). TPS forces the corresponding landmarks to exactly match each other and minimizes the bending energy of the whole image. However, in real application, such scheme would deform the image globally when deformation is only local. CSRBF needs manually determine the support size, although its deformation is limited local. Therefore, to limit the effect of the deformation, new Compact Support Thin Plate Spline algorithm (CSTPS) is approached, analyzed and applied. Such new approach gains optimal mutual information, which shows its registration result satisfactory. The experiments also show it can apply in both local and global elastic registration.
文摘Rotating systems have many applications in wide-ranging industrial contexts. The breakdown of this equipment results in economic wastes and leads to dangerous situations. To avoid such problems is very important, and it can be done through tools that inform about the existence of faults, as well as, about their progress in time. A review of the modeling process used for rotor-support-structure shows that the finite element method is the maj or method employed. In this paper, with the aid of well defined theoretical models, obtained using the finite element technique, and the state observer method for the identification and location of faults, it is possible to monitor the parameters of a rotor-support-structure system, including the foundation effects. In order to improve safety, these parameters must be supervised in case of the occurrence of failures or faults. The state observers are designed using Linear Matrix Inequalities (LMIs). Finally, experimental results (using for this a rotation system in the mechanical vibrations laboratory at Ilha Solteira's Mechanical Engineering Department) demonstrate the effectiveness of the methodology developed.
文摘This vertically self‐pillared(VSP)structure extends the application range of traditional porous materials with facile mass/ion transport and enhanced reaction kinetics.Here,we prepare a single crystal metal‐organic framework(MOF),employing the ZIF‐67 structure as a proof of concept,which is constructed by vertically self‐pillared nanosheets(VSP‐MOF).We further converted VSP‐MOF into VSP‐cobalt sulfide(VSP‐CoS2)through a sulfidation process.Catalysis plays an important role in almost all battery technologies;for metallic batteries,lithium anodes exhibit a high theoretical specific capacity,low density,and low redox potential.However,during the half‐cell reaction(Li++e=Li),uncontrolled dendritic Li penetrates the separator and solid electrolyte interphase layer.When employed as a composite scaffold for lithium metal deposition,there are many advantage to using this framework:1)the VSP‐CoS2 substrate provides a high specific surface area to dissipate the ion flux and mass transfer and acts as a pre‐catalyst,2)the catalytic Co center favors the charge transfer process and preferentially binds the Li+with the enhanced electrical fields,and 3)the VSP structure guides the metallic propagation along the nanosheet 2D orientation without the protrusive dendrites.All these features enable the VSP structure in metallic batteries with encouraging performances.
基金The authors gratefully acknowledge sponsors of this research: National Science Foundation of China (No. 51278296).
文摘Stability tests of three plate girders laterally unbraced on both ends, which were scale models of real plate girders in heavy plants for tower-type boilers, are presented and investigated. The applicability of code provisions in ANSI/AISC 360-10 about such members is discussed. A nonlinear finite element analysis was carried out, considering the combined effects of plasticity, residual stress and geometrical imperfections, to simulate the stability behavior of the specimens. The reliability of the numerical model was validated by comparisons with experimental results. The results show that stability behavior of plate girders with laterally unbraced ends is widely different from that of typical simply supported thin-walled beams. The structural response is also sensitive to initial geometrical imperfections of this objects. The model is used to improve the mechanical design of transverse stiffeners over the supports. The positive effect and offsetting influence of imperfections of thicker and additional transverse stiffeners on overall stability behavior are highlighted. A few suggestions for design process are also given.